

OPEN DAY 12 OCTOBER FROM 1.00 – 5.00PM SALE 13 OCTOBER COMMENCING AT 11.00AM DISPERSAL OF F.G. H.J. KANDK COWS INCLUDING DONO

BEN NEVIS ANGUS THE POWER OF FEMALE LINES

LOT 78. BEN NEVIS KIWI K17

LOT 68. BEN NEVIS GERANIUM L84

LOT 63. BEN NEVIS DORMIST L28

OPEN DAY

MONDAY 12 OCTOBER 2020, 1.00 - 5.00PM

MATURE COW DISPERSAL

TUESDAY 13 OCTOBER 2020 'MINGARY' 645 BRACKENDALE ROAD, WALCHA

11.00AM - 118 BEN NEVIS COWS

interfaced with Elite Livestock Auctions

Inspection from 8.00am sale day. Please note, from 10.30am cows will be moving to the pen-up yards.

Stu and Erica Halliday

Erica 0427 780 154 Stu 0417 674 412 Ben Nevis Angus 'Mingary', Walcha NSW 2354 bennevisangus@bigpond.com www.bennevisangus.com.au

JBAS-7

Miles Archdale, Walcha	0428	660	326
Mat Larkings, Walcha	0427	002	427
Simon Newton, Walcha	0467	660	320
John Setree. Stud Stock	0408	297	368

Guest Auctioneer

Paul Dooley...... 0458 662 646

Catalogue design by Megan Scrivener Design ${\boldsymbol{\cdot}}$ meganscrivener@bigpond.com

CONTENTS

Welcome	3
Sale Information	4
About the Cows	5
History	6
Our Philosophy and Brand	7
Sale Lot EBV Summary	8
Spring Cow Preview	10
Autumn Cow Preview	12
Sale Lots – Spring	17
Sale Lots – Autumn	42
Join Sires	66
TACE September 2020 Reference Table	68
Disclaimer	70
Understanding TACE Cattle Evaluation	70
How to register with Elite Livestock Auctions	72

WELCOME

Stu and I were blessed to take over the reins of this beautiful herd of cows in 2013 that my father first started in 1947. We were fortunate in that time to spend many hours with he and mum in the cattle yards and in the paddock understanding and appreciating the power of female lines, how to breed good cattle and the pure joy that comes from the pursuit of excellence.

We have significantly increased our flush program over recent years with the plan to have a mature female sale every three years. This is the first of those and we are very excited to share our genetics with the broader industry. There are many uniquely Ben Nevis pedigrees here that have been gold for us and our cutting edge and we hope that they provide as much success and joy for their new owners as they have for us.

These cows are joined the exact same way as those that are left and the embryo's in utero are the same as offered in our donors so we are offering people the chance to tap directly into the heart of our breeding programme.

Ben Nevis is one of Australia's oldest Angus herds. Running 900 Angus cows (including 600 commercials) in the high, temperate grasslands of Walcha NSW. The Ben Nevis herd has enjoyed a well earned reputation for quality and service.

In 2013 we moved to an on-property auction to allow our clients fairer access to the bulls. Since then we have been recognised as the most successful Angus Yearling Bull Sale in the country, topping the list of averages for this category from 2013 to 2018 (well above the breed average), and in 2017 making one of the top ten sales in the country. In recent times our bulls have been in high demand as Stud Sires with the following of note.

- 2020 Ben Nevis Quantum \$40,000 to Bowmont, Ben Nevis Qarma \$24,000 to Noonee Angus, Ben Nevis Quambone \$16,000 to Bowenfells Angus
- 2019 Ben Nevis Prime \$30,000 to Bannaby Angus, Ben Nevis Propogate \$28,000 to Merit Farms
- 2018 Ben Nevis Nirvana \$26,000 to Innesdale Angus Stud, Ben Nevis Newsflash \$24,000 to Bannaby Angus, Ben Nevis Napolean \$18,000 to Coolie Angus
- 2017 Ben Nevis Metamorphic \$32,000 to syndicate Banquet, Twin Oaks (NZ), Fernleigh (NZ), Atahau (NZ), Ben Nevis Massive \$30,000 to Valorbook Angus, Ben Nevis Manchester \$18,000 to Knowla Angus.
- 2016 Ben Nevis Loaded Gun \$26,000 to Cascade Angus, Ben Nevis Landslide \$20,000 and Ben Nevis Legendary \$18,000 to Valorbrook and Ben Nevis Lucrative \$18,000 to Coolie Angus

This catalogue encompasses all our mature aged females including our F, G, H, J, K and L cows and Donors in these categories. They will be sold in two sections – Spring Cows and Calves at foot followed by Autumn Cows PTIC.

Please call with any questions. Inspections by appointment are encouraged.

With best wishes,

Stu and Erica (Hap) Halliday

SALE INFORMATION

INAUGURAL BEN NEVIS MATURE FEMALE DISPERSAL

OPEN DAY	12 October, 1.00pm – 5.00pm Drinks and light supper to follow. RSVP essential – please text Erica with numbers to 0427 780 154
SALE SAY	13 October, inspection from 8.00am, sale 11.00am

Extensive undercover protection is in place.

LOCATION

645 Brackendale Road, Walcha.

From Walcha take the Oxley Highway and head east towards Port Macquarie. Approximately 4kms out of Walcha turn right onto the Brackendale Road. The Mingary woolshed and yards are approximately 7kms along the Brackendale Road on the left hand side, and will be well sign posted on sale day!

ACCOMODATION

Walcha Visitor Information Centre (02) 6774 2460.

There are two motels, and two hotels in Walcha. We are an hours drive from Armidale and 1 ¼ hours drive from Tamworth. Both are larger regional centres with Airports.

COVID SAFE

COVID-19 rules will apply we will be required to get details of attendee's. There is adequate space for social distancing and hand sanitiser will be readily available. Large television screens will livestream the sale inside the larger area of the woolshed if available seating becomes limited with adequate spotters to take bids.

INSPECTIONS

Pre-sale inspections are available by appointment. Please call Erica 0427 780 154 or Miles Archdale from Nutrien Boulton's 0428 660 326 to arrange.

REFRESHMENTS

Refreshments will be available in accordance with COVID-19 regulations, with afternoon tea and a light supper on the Open Day 12 October, as well as morning and afternoon tea and lunch on Sale Day.

INSURANCE

Will be available on sale day through CGU and WFI via Nutrien Boultons.

REGISTRATION

Ownership of the cows will be transferred to the vendors with Angus Australia provided accurate transfer details are supplied with the Buyers Instruction Slip.

GST

All animals are sold exclusive of GST.

REBATE

A 2% rebate is allowed to reciprocating agents accompanying a buyer to the sale, provided they have registered in writing 24 hours before the sale and settle on their behalf within seven days of the invoice.

CARTAGE/TRANSPORT

All instructions for transport must be in writing. Transport will be coordinated by Lockie Falls Transport 0429 826 342. Buyers Instructions Slips must be completed prior to departure from the sale.

SAFETY

At the sale, please do not enter the pens unnecessarily and do not crowd the animals. No children are permitted to enter the pens.

PHONE AND ONLINE BIDDING

We have a mobile booster installed and the sale will be interfaced with Elite Livestock Auctions, or you can contact the selling agents. For instructions on how to register and bid online please see page 72.

PARENT VERIFICATION SUFFIXES

The animals listed within this catalogue including its pedigree, are displaying a Parent Verification Suffix which indicates the DNA parent verification status that has been conducted on the animal. The Parent Verification Suffixes that will appear at the end of each animal's name are as follows:

- **PV** Both parents have been verified by DNA
- SV The sire has been verified by DNA
- DV The dam has been verified by DNA
- # DNA verification has not yet been conducted
- E DNA verification has identified that the sire and/or dam may possibly be incorrect, but this cannot be confirmed conclusively.

ABOUT THE COWS

LOT ORDER

LOT 1 - 61	Spring Cows with Calves at foot. In year and tag order.
LOT 62 - 118	Autumn Cows PTIC. In year and tag order.

We believe in every cow in the sale and as cows are a very personal preference we have lotted them from youngest to oldest in year groups for Spring and Autumn and within the year groups we have simply lotted them in tag order. The only exception to this is the Jean Donors Lot 14 H215 and Lot 15 K80 and Lot 23 H103 with a number of requests to move them further up the sale catalogue.

DONORS

With the exception of Donors Lot 14 H215 and Lot 15 K80 and Lot 23 H103 the donors have simply been lotted with their year group and in tag order as the rest of the cows. They will however be penned separately on Sale day because of their large size, courtesy of the ET drugs and a good season.

They have had no special treatment since flushing but managed to waddle through the worst drought in living history growing even larger on meagre rations in confinement. All bar one (J115) who was flushed most recently are back in calf as the catalogue goes to print.

HEALTH

The Ben Nevis herd holds a JBAS-7 status. They have been treated with 7 in 1 and Pestiguard as well Fasinex Oral and Eprinex Pour-on on 15/09/2020.

The routine vaccination program for the herd includes giving the cows an annual multimin, Vitamin B12 and Selenium and Pestiguard prior to joining. In addition before they calve each year they get a booster 7 in 1, Pestiguard, Eprinex or Ivomec pour on and a Fascinex. Fluke is an issue in our country and you should treat again after arrival at home to ensure all immature fluke are accounted for.

JOHNES STATUS

We are tested JBAS-7.

PREGNANCY STATUS

The cows sell either as Spring or Autumn Calvers. At the time of printing a number of the Spring Calvers have already calved and the calf details are highlighted in the Lot. Additional calf details will be available by supplementary sheet. All but three Spring cows should have calved by sale time.

The cows were foetal aged for pregnancy on July 12 by Christopher Hallet BVs MVSt of Coolah Veterinary Hospital to determine if the cows were pregnant to AI or the back-up bull. Subsequent preg test were undertaken on 12/8/2020 to determine pregnancy status to back up bulls in the Autumn program. The detected sire is shown in the comments as well as an average of the predicted EBVs for the progeny.

SPECIAL NOTES

Because we run a large commercial herd alongside the stud our cows can alternate between being on the inventory and not as we have a very tight joining in the Stud to produce yearling bulls. Some cows go to the commercial program but because they have such good calves they can work their way back onto the inventory.

Any cow not in calf is sent to slaughter. Usually this is without exception but last year when our cows were in confinement we were sent a bad feed source at the time of joining. This resulted in a disastrous conception rate. Rather than re-join the cows for a summer calf we held them over to an Autumn calving. All Spring cows in the sale had their calves very early weaned down to six weeks to lower feed costs and in an attempt to increase conception rates during that very difficult time.

5

Over 70 years \Lambda

HISTORY

During the 1902 drought the Steel family changed completely over to Angus when the Shorthorns they had died on the rivers while the Angus survived by climbing and foraging in the hills, (sorry Shorthorn lovers).

So they became the breed of choice for my family because of what was referred to as constitution and doing ability. The Steels planned on a stud and travelled to Bald Blair where they purchased their original foundation females complete with name plates which hung on chains around their necks and proceeded to walk them the 160kms back home. Unfortunately the chains eventually wore and the plates fell off however this was the beginning of the highly regarded Ben Nevis commercial herd.

The stud did not form until 1947after Bruce Steel (my father and Ben Nevis Founder) returned from WW2. During the war an underage Bruce was dispatch rider for none other than HG Munro of Booroomooka and he inspired him to start an Angus Stud. He did this with his father in 1947 with the Abington dispersal and he purchased his Foundation Sire Booroomooka Assian for 1,000 guineas, the top price bull as well as Junior Champion bull at Sydney that year.

And so began a whole way of life, living and breathing the Angus breed as a single source of passion and joy. There have been many successes topping the Walcha weaner sales, NEAB Bull Sales and in the show ring. Most notable of these was Champion of Champion at the Brisbane EKKA in 2008 and Grand Champion Angus bulls at Sydney and Brisbane Royal, but perhaps Dad's greatest success has been his clients with multi generations of his original clients still purchasing bulls today including the Thomson and Lockyer families of Walcha.

Today Ben Nevis is a fourth generation family business with all the family involved including Cherry and Kylie Steel and kids Jack and Maggie Halliday and Bonnie Cox.

Bruce passed away at the age of 93 in 2017 and is fondly remembered as an inspiration and mentor to many Angus breeders, as well as being the ultimate feminist. He always told me that women could do anything and strongly believed in their natural ability with cattle, dogs and horses.

Bruce and Cherry ran the original Roundup with Jason Strong and were recognised as the inaugural recipients of the Stewarts Award for services to Angus Youth – of this award he was most proud. Stu and I were also honoured to receive this award in 2008. In addition, Dad and Mum are both honorary members of Angus Australia where Bruce was a Councillor, Chairman of NSW State Committee and New England Angus Breeders.

He loved his Angus family as we still do today.

Clockwise from above: Bruce Steel in 2010 with the top priced weaners at the Landmark Walcha Weaner sale. Bruce Steel, Erica Halliday and Ben Nevis Arod Champion of Champions Brisbane Royal 2008. Bruce Steel and Richard White with Ben Nevis Crusader W38 Jn Champion Sydney Royal 1979. Ben Nevis Xmas Jn and Grand Champion Brisbane Royal 1980.

6

OUR PHILOSOPHY

There is, in our heads a big difference between simply multiplying genetics and the art of breeding and there is no greater leverage than blending complementary types and understanding the power of female lines. It is the key to not only our unique edge but consistency.

Ben Nevis is 4,000 (sometimes wild) acres, reaching 1,350m above sea level in temperate often frigid conditions that require cows to climb, work and forage. It runs up to 1,100 cows.

We don't select females but allow our harsher environment to test the animals and we simply multiply those that thrive via ET and cull for temperament, feet and infertility.

It would have been easy to use paper and EBVs to create cattle but nothing worthwhile is easy and we have never been willing to compromise on those traits that first made the breed so valuable to my forebears. So while it's old fashioned to talk and breed skin, muzzles, flanks and spines it matters to us and sets us apart. We believe in going the extra mile to create big lines of beautiful, quiet cattle that are rich in old fashioned quality indicators and injected with the latest carcase to target modern and premium markets.

We are fiercely proud to be a family-run beef business committed to regenerating the land. We want to teach our kids the value of hard work and the importance of integrity and humility, and instill in them good old "sacred site" and "sacred cow" syndromes.

OUR BRAND

Our brand defines us. The triangle being the strongest of forms represents the mountain where we live (Ben Nevis), and what we strive to do well. Quality, Integrity, Family.

Above from left: Erica Halliday, her father Bruce Steel (founder of Ben Nevis) and Stuart Halliday. Below left: Erica Halliday, Maggie Halliday, Stuart Halliday and Jack Halliday.

2020 BEN NEVIS SPRING COWS WITH CALVES AT FOOT

							EB	V SUMM/	ARY			EXPEC	TED CAL	.F MPVs		
Lot	Ident	Due Sire	Due Date	Dam	Sire	BW	600	EMA	P 8	IMF	BW	600	EMA	P 8	IMF	MGS
1	L002	BN President	30/09/20	NBNJ72	NBNJ158	3.3	95	2.1	-0.9	1.2	2.6	110	3.2	-0.8	1.7	Geranium
2	L017	BN Propogate P37	18/08/20	NBNB44	USA17031465	4.2	92	6.8	-2.1	1.3	5.2	121	6.5	-1.5	2.0	Kiwi
3	L020	Beast Mode	06/09/20	NBND40	WLHD19	3.2	91	2.9	-0.2	1.8	3.3	125	4.5	-0.9	2.2	Geranium
4	L031	MM Paratrooper	06/09/20	NBNG4	WLHD19	6.8	137	3.8	-3.0	2.3	4.9	133	5.1	-1.1	2.5	Wilcoola
5	L041	Beast Mode	06/09/20	NBNG148	WLHD19	6.6	134	2.5	-0.7	1.6	5.0	146	4.3	-1.2	2.1	Geranium
6	L049	BN Propogate P37	06/09/20	NBNH210	AGQJ5	3.5	92	4.7	0.7	0.9	4.9	121	5.5	-0.1	1.8	Kiwi
7	L056	BN Newsflash	06/09/20	NBNH100	JSRJ1	7.1	131	4.9	-0.7	1.0	6.2	136	4.7	-1.5	1.8	Jean
8	L060	BN Newsflash	06/09/20	NBNJ49	HIOE7	3.5	95	5.9	-0.1	2.3	4.4	118	5.2	-1.2	2.4	Kiwi
9	L065	Beast Mode	18/08/20	NBNJ124	NBNJ158	3.8	94	2.1	1.5	1.5	3.6	126	4.1	-0.1	2.0	Jean
10	L066	BN Newsflash	18/08/20	NBNJ126	HIOE7	3.6	110	3.7	0.7	2.5	4.5	125	4.1	-0.8	2.5	Geranium
11	L072	BN Newsflash	16/08/20	NBNJ190	HIOE7	5.9	137	5.5	-1.5	2.1	5.6	139	5.0	-1.9	2.3	Floryx
12	L073	BN Newsflash	18/08/20	NBNH124	JSRJ1	5.7	98	4.2	-1.0	1.3	5.5	119	4.4	-1.7	1.9	Dormist
13	L083	BN Podium P242	27/09/20	NBNA18	WLHD19	5.9	114	3.7	0.0	1.4	4.8	123	6.9	-0.7	2.1	Geranium
14	H215	BN Monarch	20/02/21	NBND71	NBNF41	4.0	139	2.5	-0.3	0.4	3.5	123	3.2	0.3	1.6	Jean
15	K080	MM Paratrooper	25/03/21	NBNH215	NBNE6	5.4	151	3.7	-2.1	0.7	4.2	140	5.0	-0.6	1.7	Jean
16	L089	BN Newsflash	06/09/20	NBNC67	WLHD19	5.5	96	3.9	-0.5	2.2	5.4	118	4.2	-1.4	2.4	Geranium
17	L095	Beast Mode	18/08/20	NBND76	NBNG56	4.9	98	3.6	-1.3	1.6	4.1	128	4.8	-1.5	2.1	Geranium
18	L096	BN Newsflash	06/09/20	NBND83	WLHD19	5.7	104	3.4	0.1	2.2	5.5	122	4.0	-1.1	2.4	Geranium
19	L109	Beast Mode	06/09/20	NBNG27	USA15885405	4.7	100	5.1	0.0	1.7	4.0	129	5.6	-0.8	2.1	Geranium
20	L129	BN Podium P242	29/09/20	NBNH96	JSRJ1	6.3	95	4.0	-0.3	1.1	5.0	113	7.0	-0.8	1.9	Kiwi
21	L156	BN Newsflash	06/09/20	NBNJ100	NBNJ142	3.1	111	4.7	0.1	2.2	4.2	126	4.6	-1.1	2.4	Geranium
22	L228	BN Propogate P37	18/08/20	NBNH103	USA17031465	3.5	111	6.9	0.3	1.2	4.9	131	6.6	-0.3	1.9	Jean
23	H103	BN Monarch	25/03/20	NBNB16	QRFE269	8.4	141	4.7	0.4	0.4	5.7	124	5.5	0.6	1.6	Jean
24	K057	GAR Inertia	12/08/20	NBNE41	NZE1217000784	5.2	115	6.4	1.5	1.0	4.4	125	8.1	1.4	2.5	Kiwi
25	K077	BN Podium P242	30/09/20	NBNG75	NBNG56	2.9	91	4.3	-0.3	0.8	3.3	111	7.2	-0.8	1.8	Kiwi
26	K087	Beast Mode	06/09/20	NBNG22	NBNH116	5.5	106	4.1	1.1	1.6	4.4	132	5.1	-0.3	2.1	Jean
27	K100	BN Podium P242	07/10/20	NBNG128	NBNG56	4.9	84	5.0	-1.6	1.3	4.3	108	7.5	-1.5	2.0	Kiwi
28	K135	BN Newsflash	06/09/20	NBNF8	NBNH123	7.6	101	2.5	-0.2	1.4	6.5	121	3.5	-1.3	2.0	Jean
29	K122	GAR Inertia	06/09/20	NBNF75	NBNH123	4.3	89	1.2	4.6	0.7	4.0	112	5.5	2.9	2.4	Yolande
30	K117	Beast Mode	06/09/20	NBNF174	NBNE6	2.0	92	1.7	-0.9	1.2	2.7	125	3.9	-1.3	1.9	Kiwi
31	J011	GAR Inertia	18/08/20	NBNB52	NMMD78	3.4	110	1.8	0.6	0.5	3.5	123	5.8	0.9	2.3	Kiwi
32	J019	BN Podium P242	27/09/20	NBND96	NBNE6	2.9	92	5.1	-2.7	0.7	3.3	112	7.6	-2.0	1.7	Umbra
33	J048	Beast Mode	18/08/20	NBNF18	BCHE11	6.5	96	4.1	-0.6	1.7	4.9	127	5.1	-1.1	2.1	Geranium

							EB	V SUMM/	ARY			EXPEC	TED CAL	F MPVs	•	
Lot	Ident	Due Sire	Due Date	Dam	Sire	BW	600	EMA	P 8	IMF	BW	600	EMA	P 8	IMF	MGS
34	J067	BN Metamorphic M51	18/08/20	NBNE116	NMMD78	5.3	134	3.4	1.0	1.1	5.4	149	4.0	-0.6	1.7	Dormist
35	J070	BN Propogate P37	18/08/20	NBNE63	NBNE6	2.2	92	4.9	0.0	0.7	4.2	121	5.6	-0.5	1.7	June
36	J087	BN Podium P242	30/09/20	NBNG95	NBNE6	4.2	107	2.8	-2.2	0.9	3.9	119	6.4	-1.8	1.8	Laura
37	WITHD	RAWN														
38	J117	M Exclusive	06/09/20	NBNG92	NZE04379	4.4	98	1.0	2.9	2.4	4.4	119	4.0	1.4	2.4	Geranium
39	J121	BN Propogate P37	06/09/20	NBNG77	HIOE7	1.8	102	7.7	-0.3	2.8	4.0	126	7.0	-0.6	2.7	Celeste
40	J122	Beast Mode	18/08/20	NBNG84	USA15885405	6.3	111	2.4	-0.7	1.3	4.8	135	4.2	-1.2	1.9	June
41	J145	GAR Inertia	06/09/20	NBNA18	NMMD78	7.4	138	2.6	-1.4	0.0	5.5	137	6.2	-0.1	2.0	Geranium
42	J160	M Exclusive	06/09/20	NBNG16	HIOE7	3.2	90	4.8	-0.2	2.9	3.8	115	5.9	-0.2	2.6	Dormist
43	H003	Beast Mode	18/08/20	NBNU87	BCHE11	6.6	88	2.8	-1.2	1.3	5.0	123	4.4	-1.4	1.9	Floryx
44	H023	Beast Mode	18/08/20	NBNF206	NZE04379	3.8	89	1.6	-0.9	2.3	3.6	124	3.8	-1.3	2.4	Denmist
45	H042	BN Propogate P37	06/09/20	NBNH42	NZE04379	3.8	103	5.3	-0.3	2.3	5.0	127	5.8	-0.6	2.5	Kiwi
46	H044	BN Metamorphic M51	06/09/20	NBNF174	NZE04379	3.7	103	1.7	0.0	2.3	4.6	133	3.2	-1.1	2.3	Kiwi
47	H083	BN Metamorphic M51	06/09/20	NBNY80	NZE04379	2.5	93	3.5	-1.3	2.1	4.0	128	4.1	-1.8	2.2	Jean
48	H088	GAR Inertia	11/08/20	NBNC23	QRFE269	7.9	129	5.4	0.3	0.5	5.8	132	7.6	0.8	2.3	June
49	H095	Beast Mode	06/09/20	NBNC75	QRFE269	4.8	87	2.8	0.5	1.0	4.1	123	4.4	-0.6	1.8	Umbra
50	H100	BN Propogate P372	21/10/20	NBNA37	QRFE269	7.3	115	3.7	-1.1	0.9	6.3	128	4.8	-1.7	2.1	Jean
51	H124	GAR Inertia	06/09/19	NBNC75	QRFE269	7.2	99	4.1	-3.4	1.2	5.4	117	7.0	-1.1	2.6	Dormist
52	H166	BN Metamorphic M51	18/08/20	NBND83	NBNF6	3.9	87	1.8	0.6	1.4	4.7	125	3.2	-0.8	1.8	Geranium
53	H220	GAR Inertia	06/09/20	NBND117	QRFE269	7.3	108	4.3	-2.4	1.0	5.1	122	8.5	-1.9	2.4	Denmist
54	G008	BN Propogate P37	06/09/20	NBNE123	NZE04379	4.0	97	2.0	0.0	1.7	5.1	124	4.1	-0.5	2.2	Floryx
55	G019	BN Metamorphic M51	16/08/20	NBNE64	NZE04379	2.3	83	3.1	0.3	2.6	3.9	123	3.9	-1.0	2.4	Geranium
56	G077	BN Metamorphic M51	18/08/20	NBNE25	NZE04379	2.7	80	5.9	0.1	2.1	4.1	122	5.3	-1.1	2.2	Celeste
57	G101	BN Propogate P37	06/09/20	NBNY89	NBNE6	3.6	87	3.1	-1.6	0.6	4.9	119	4.7	-1.3	1.6	Florina
58	G201	MM Paratrooper	06/09/20	NBNA84	NBNB88	4.9	101	4.6	-0.9	1.6	3.9	115	5.5	0.0	2.1	Geranium
59	F071	MM Paratrooper	06/09/20	NBNC46	NBND3	5.7	130	6.3	-2.6	0.5	4.3	130	6.3	-0.9	1.6	Dormist
60	F055	BN Metamorphic M51	18/08/20	NBND63	NZE04379	6.6	128	6.0	-1.1	1.5	6.1	146	5.3	-1.7	1.9	Dormist
61	F011	Beast Mode	16/08/20	NBND55	NZE04379	6.2	96	6.0	1.5	2.0	4.8	127	6.0	-0.1	2.3	Geranium

2020 BEN NEVIS AUTUMN COWS PTIC

							EB	/ SUMM/	ARY			EXPEC	TED CAL	F MPVs		
Lot	Ident	Due Sire	Due Date	Dam	Sire	BW	600	EMA	P 8	IMF	BW	600	EMA	P 8	IMF	MGS
62	L012	M Exclusive	04/03/21	NBNJ108	HIOE7	5.5	134	5.2	-1.0	2.1	5.0	137	6.1	-0.6	2.2	Flor-H
63	L028	BN Monarch	11/02/21	NBNF71	WLHD19	3.5	126	4.4	-0.1	1.0	3.2	117	4.1	0.4	1.9	Dormist
64	L033	BN Prospector P412	11/03/21	NBNG16	USA15885405	5.1	99	3.0	-1.8	2.3	5.8	113	5.5	-2.5	2.6	Dormist
65	L035	Beast Mode	04/02/21	NBNG79	WLHD19	6.9	128	4.0	-0.6	2.1	5.1	143	5.0	-1.1	2.3	Denmist
66	L063	BN Metamorphic M51	25/02/21	NBNJ115	NBNJ158	2.4	109	3.6	1.1	1.8	4.0	136	4.1	-0.6	2.0	Geranium
67	L077	BN Monarch	25/03/21	NBNF159	AGQJ5	4.6	91	3.2	-0.8	1.2	3.8	99	3.5	0.0	2.0	Florina
68	L084	BN Prospector P412	11/03/21	NBNB77	WLHD19	6.0	109	3.7	1.1	2.7	6.2	118	5.8	-1.1	2.8	Geranium
69	L100	M Exclusive	11/02/21	NBNE104	WLHD19	3.7	94	3.2	-1.5	2.2	4.1	117	5.1	-0.8	2.3	Laura
70	L112	Beast Mode	11/02/21	NBNG91	WLHD19	3.6	110	3.1	0.1	2.1	3.5	134	4.6	-0.8	2.3	June
71	L115	BN Monarch	25/03/21	NBNG117	USA17031465	3.2	120	6.7	-2.4	1.7	3.1	114	5.3	-0.8	2.2	Jean
72	L229	GB Fireball	04/03/21	NBNE127	WLHD19	5.5	104	3.7	0.7	1.9	4.2	120	8.2	-0.4	2.8	Geranium
73	L231	BN Prospector P412	25/03/21	NBNH103	USA17031465	3.6	116	7.2	-0.7	1.0	5.0	122	7.6	-2.0	-2.0 2.0 Jean	
74	L234	BN Metamorphic M51	06/09/21	NBNF5	NBNJ85	5.3	122	3.7	-0.9	2.0	5.4	143	4.2	-1.6	2.1	Geranium
75	K002	BN Monarch	25/03/21	NBNH93	NZE04379	2.2	104	2.4	0.6	1.6	2.6	106	3.1	0.7	2.2	Jean
76	K010	BN Prospector P412	18/03/21	NBNH168	USA17031465	2.2	104	6.6	-0.3	1.7	4.3	116	7.3	-1.8	2.3	Geranium
77	K016	Beast Mode	04/02/21	NBNH26	HIOE7	1.9	114	4.8	0.8	1.8	2.6	136	5.4	-0.4	2.2	Dormist
78	K017	M Exclusive	11/02/21	NBNH42	HIOE7	3.1	117	6.9	0.2	2.6	3.8	128	7.0	0.1	2.5	Kiwi
79	K018	MM Paratrooper	11/02/21	NBNH84	HIOE7	4.6	119	6.4	-1.4	2.7	3.8	124	6.4	-0.3	2.7	Geranium
80	K024	BN Prospector P412	25/03/21	NBNH100	USA17031465	3.7	105	5.5	-2.8	1.3	5.1	116	6.7	-3.0	2.1	Jean
81	K059	BN Metamorphic M51	25/02/21	NBNH97	USA17031465	3.1	108	5.5	-0.8	1.7	4.3	136	5.1	-1.5	2.0	Dormist
82	K062	BN Podium P242	22/03/21	NBNG160	NBNG56	3.4	86	5.0	1.1	1.3	3.5	109	7.5	-0.1	2.0	Geranium
83	K070	BN Prospector P412	22/03/21	NBNB46	USA15885405	4.2	85	6.1	-2.5	1.7	5.3	106	7.0	-2.9	2.3	Geranium
84	K081	BN Metamorphic M51	12/02/21	NBNG64	NBNG56	6.5	105	2.6	-1.3	1.8	6.0	134	3.6	-1.8	2.0	Kiwi
85	K094	BN Prospector P412	22/03/21	NBNG4	NBNF41	4.9	134	4.7	-2.7	1.5	5.7	131	6.3	-3.0	2.2	Wilcoola
86	K103	BN Prime	25/02/21	NBND48	NZE1217000784	5.4	105	5.8	-1.7	1.3	4.3	119	5.4	0.3	2.4	Dormist
87	WITHDF	RAWN														
88	K176	BN Newsflash	25/02/21	NBNZ119	NBNF41	3.5	104	1.6	0.2	1.3	4.4	122	3.1	-1.1	1.9	Geranium
89	J021	BN Monarch	10/06/21*	NBNE114	NMMD78	5.3	122	3.0	-0.6	0.9	5.9	125	5.5	-1.9	1.9	Kiwi
90	J023	BN Propogate P37	22/02/21	NBNB32	USA15885405	2.7	82	2.0	2.2	1.4	4.5	116	4.1	0.7	2.0	Jean
91	J049	BN Monarch	18/03/21	NBNB44	USA15885405	5.9	96	4.5	-1.5	1.7	4.4	102	4.2	-0.4	2.2	Kiwi
92	J058	BN Newsflash	01/04/21	NBNZ130	NMMD78	5.0	108	3.0	2.3	1.1	5.2	124	3.8	0.0	1.8	Dormist
93	WITHDR	RAWN														
94	J102	BN Newsflash	25/02/21	NBNB37	NMMD78	4.8	113	1.3	1.3	0.2	5.1	127	2.9	-0.5	1.4	Dormist

							EB	V SUMM	ARY			EXPEC	TED CAL	F MPVs		
Lot	Ident	Due Sire	Due Date	Dam	Sire	BW	600	EMA	P 8	IMF	BW	600	EMA	P 8	IMF	MGS
95	J115	BN Monarch	10/06/21*	NBNG201	HIOE7	2.7	111	6.0	-0.8	2.2	2.8	109	4.9	0.0	2.5	Geranium
96	J126	BN Metamorphic M51	25/02/21	NBNG140	NZE04379	4.9	99	1.7	0.8	2.1	5.2	131	3.2	-0.7	2.2	Geranium
97	J130	BN Monarch	10/06/21*	NBNG8	HIOE7	2.2	107	3.1	0.0	2.8	2.6	107	3.3	0.4	2.8	Floryx
98	J134	BN Monarch	11/02/21	NBNB77	NMMD78	6.7	138	3.0	-1.0	1.5	4.8	123	3.4	-0.1	2.1	Geranium
99	J148	MM Paratrooper	04/02/21	NBNG115	HIOE7	4.8	127	5.4	0.1	2.1	3.9	128	5.9	0.5	2.4	Jean
100	H006	GB Fireball	04/02/21	NBNV29	BCHE11	8.4	123	5.9	0.5	0.8	5.6	130	9.3	-0.5	2.3	Geranium
101	H010	GB Fireball	25/02/21	NBNF115	NBNF41	3.7	106	1.0	-0.1	1.1	3.3	121	6.9	-0.8	2.4	Violin
102	H026	BN Prime	11/02/21	NBNF157	NZE04379	3.5	107	1.7	-0.3	1.9	3.3	120	3.3	1.0	2.7	Dormist
103	H075	BN Metamorphic M51	11/02/21	NBNA126	NZE04379	3.9	80	3.0	0.3	1.6	4.7	122	3.8	-1.0	1.9	Umbra
104	H084	BN Prospector P412	10/06/21*	NBNB77	NZE04379	5.4	102	4.3	-1.4	2.5	5.9	115	6.1	-2.3	2.7	Geranium
105	H093	BN Prime	11/02/21	NBNB57	QRFE269	5.7	89	2.8	-2.2	1.1	4.4	111	3.9	0.0	2.3	Jean
106	H169	Command	25/02/21	NBNA18	NBNE6	6.6	120	2.9	-1.7	0.4	4.8	129	7.4	-2.2	1.5	Geranium
107	H171	GB Fireball	25/02/21	NBND40	NBNF6	6.6	121	2.3	-4.8	1.2	4.7	129	7.5	-3.1	2.5	Geranium
108	H200	BN Monarch	25/03/21	NBNE123	BCHE11	6.4	112	3.9	1.8	1.4	4.7	110	3.9	1.3	2.1	Floryz
109	H210	BN Monarch	10/06/21*	NBNB86	NBND3	4.8	96	5.1	0.3	0.9	5.5	124	5.6	0.6	1.8	Kiwi
110	G004	BN Prospector P412	25/03/21	EKSC14	VOND274	8.6	138	6.6	-5.9	1.3	7.5	133	7.3	-4.6	2.1	Wilcoola
111	G012	BN Metamorphic M51	25/02/21	NBNE122	NZE04379	3.2	71	0.5	0.0	2.3	4.4	117	2.6	-1.1	2.3	Geranium
112	G022	MM Paratrooper	04/02/21	NBNE45	NZE04379	4.6	112	2.5	1.2	1.9	1.5	65	3.2	0.5	1.3	Jean
113	G027	BN Metamorphic M51	25/02/21	NBNE128	NZE04379	4.4	91	5.0	-0.1	1.8	5.0	127	4.8	-1.2	2.0	Geranium
114	G049	BN Prime	04/03/21	NBNB52	USA16107687	4.1	94	1.4	1.3	0.8	3.6	113	3.2	1.8	2.2	Kiwi
115	G076	BN Metamorphic M51	04/03/21	NBNE35	NZE04379	0.5	71	3.4	1.2	2.6	3.0	117	4.0	-0.5	2.4	Dormist
116	G091	BN Prospector P412	25/03/21	NBNX145	NBND3	6.0	119	2.5	-0.4	1.1	6.2	123	5.2	-1.8	2.0	June
117	G115	BN Monarch	19/03/21	NBNE168	NZE04379	4.1	92	3.6	1.2	1.6	3.5	100	3.7	1.0	2.2	Geranium
118	G129	NBNM51	25/02/21	NBNW47	NBNE6	1.7	79	4.1	0.1	1.2	4.1	103	6.0	-1.6	2.1	Dormist

SPRING COWS | SALE LOTS 1 – 24

NOTE: EBVs on pages 12 to 16 are mid parent values of the expected calf.

LOT 46. H044 Infinity x Raff Midland Due sire BN Metamorphic M51

BW 600 EMA P8 IME 4.6 133 3.2 -1.1 2.3

LOT 47. H083 Infinity x TM Viceroy Due sire BN Metamorphic M51 BW 600 EMA P8 IME 4.0 128 4.1 -1.8 2.2

13

LOT 48. H088 Empire x BN Xerox Due sire GAR Inertia BW 600 EMA P8 IME 5.8 132 7.6 0.8 2.3

LOT 49. H095 Empire x D Midland Due sire Beast Mode

Due sire BN Podium P242

Due sire GAR Inertia

SPRING CALVERS

5.5

0

115

3.9

Please note that Lots 1 - 61 sell open, ready to join with calf at foot, with the exception of Donors in Lots 14, 15 and 23 who are Autumn Calvers.

2.1

4.3

129

6.3

-0.9

1.6

IMF

6.1

146

5.3

-1.7

1.9

4.8

127

6.0

-0.1

2.3

LOT 62. L012 Bartel x Impact Due sire M Exclusive BW 600 EMA IMF P8 5.0 137 6.1 -0.6 2.2

LOT 66. L063 BN Judo x Bartel Due sire BN Metamorphic M51 BW 600 FMA P8 IME 4.0 136 4.1 -0.6 2.0

LOT 63. L028 Stewie x Pedro Due sire BN Monarch BW 600 EMA P8 3.2 117 4.1 0.4

LOT 67. L077 Dal Johno x R Midland Due sire BN Monarch BW 600 FMA P8 IME 3.8 99 3.5 0 2.0

LOT 64. L033 Impact x Infinity Due sire BN Prospector P412 BW 600 EMA P8 IMF 5.8 113 5.5 -2.5 2.6

LOT 68. L084 Stewie x BN Zexar Due sire BN Prospector P412 BW 600 EMA P8 IME 6.2 118 5.8 -1.1 2.8

	Sec.			
	45	4	3	- 20
41	1	EU N	12	Service Service
-4	AR	alliday.	Liture	to all
10.00		Called Ma	A. A. H	1 line

LOT 65. L035 Stewie x Pedro Due sire Beast Mode BW 600 EMA IMF P8 5.1

IMF

2.3

LOT 69. L100 Stewie x BN Zexar Due sire M Exclusive BW 600 FMA P8

5.1

-0.8

117

4.1

AUTUMN COWS SALE LOTS 97 - 118 NOTE: EBVs on pages 12 to 16 are mid parent values of the expected calf.

3.7

1.0

2.2

4.1

103

6.0

-1.6

2.1

99

3.5

Lot 1 **BEN NEVIS GERANIUM L2[#]**

HBR 13/7/15 AMFU,CA14%,DDFU,NHFU

REMITALL NIGHTHAWK 37N[#] REMITALL H RACHIS 21R# HENDERSON MISSIE 32'02# **BEN NEVIS JUDO J158sv** TE MANIA INFINITY 04 379 AB* BEN NEVIS GERANIUM G26sv **BEN NEVIS GERANIUM E79**#

MYTTY IN FOCUS# **BEN NEVIS ERITREA E6sv BEN NEVIS DORMIST C46**# **BEN NEVIS GERANIUM J72#** BEN NEVIS ZEXAR Z86PV **BEN NEVIS GERANIUM D40sv** BEN NEVIS GERANIUM W035#

ID NBNL2

Geranium L2 is the granddaughter of our prolific matron – Donor Cow Geranium D40. She has lovely fine skin and type associated with all the Judo's, and the doing ability to go with it. Our Judo's are outcrosses and are fast becoming the high performing cow group here with our top two Q bulls out of Judo first calvers by Beast Mode. Her joining sire was the pick bull of the P year from our G22 donor line by Prophet.

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
A.X.	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	2.3	1.7	-1.8	3.3	41	75	95	76	20	1.9	-3.3	52	2.1	0.1	-0.9	0.6	1.2	0.46	ABI	DOM	GRN	GRS
ACC	53%	40%	55%	76%	69%	69%	73%	66%	51%	52%	33%	59%	58%	65%	63%	58%	57%	44%	\$89	\$97	\$83	\$93
PERC	50	60	88	26	87	85	87	87	23	48	76	90	96	40	64	45	77	84	91	86	91	91
	Expe	cted Av	erage I	Progen	y Value	s – NBM	VP130 >		2													
EBV	4.2	2.9	-2.7	2.6	47	87	110	84	23	1.7	-4.4	59	3.2	-0.3	-0.8	0.6	1.7	0.52	\$113	\$112	\$115	\$113
ACC	58%	49%	61%	74%	69%	69%	71%	67%	58%	58%	41%	62%	61%	66%	64%	62%	60%	51%	36%	33%	37%	36%

MATING TYPE AI

Purchased by:

н

BEN NEVIS KIWI L17[#] Lot 2

HBR	14/7/15	AMFU,CAFU,DDFU,NHFU	ID NBNL17	MATING TYPE AI
-----	---------	---------------------	-----------	----------------

CONNEALY CONSENSUS# CONNEALY CONSENSUS 7229^{sv} BLUE LILLY OF CONANGA 16* **CONNEALY COMRADE 1385#** G A R NEW DESIGN 5050# HAPPY GEE OF CONANGA 919# HAP GINA OF CONANGA 260 4965#

VERMILION DATELINE 7078# **VERMILION YELLOWSTONE#** VERMILION B JESTRESS 3912# **BEN NEVIS FERGIE B44# BEN NEVIS QUASIM+95# BEN NEVIS FERGIE W091**# BEN NEVIS FERGIE N80+93# A really neatly made and balanced young cow with a thumping calf at foot. She has a beautiful fine, skin and has a lovely head with the extra girth, wedge shape and doing ability the Comrades are known for. This joining to Propogate is complementary and should be very exciting - sexy numbers and phenotype.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (E	MA, Rib	, Rump	, IMF)
Calo Facilitati	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	5.3	2.8	-6.4	4.2	45	75	92	79	8	0.9	-3.1	51	6.8	-1.5	-2.1	2.0	1.3	0.25	ABI	DOM	GRN	GRS
ACC	59%	51%	63%	76%	70%	70%	74%	69%	63%	60%	43%	63%	62%	67%	66%	62%	62%	49%	\$104	\$112	\$103	\$105
PERC	29	50	19	48	64	84	91	84	98	89	79	91	29	87	90	5	74	61	77	46	77	75
	Expe	cted Av	erage I	Progen	y Value	s – NBI	NP37 x	NBNL1	7													
EBV	5.3	2.9	-6.9	5.2	55	96	121	104	14	2.3	-5.1	68	6.5	-1.8	-1.5	1.4	2.0	0.26	\$135	\$127	\$145	\$129
ACC	57%	48%	64%	74%	68%	69%	70%	66%	59%	61%	39%	61%	60%	65%	63%	60%	60%	48%	35%	32%	37%	36%

Purchased by:

BEN NEVIS GERANIUM L20[#] Lot 3

HBR 19/8/15 AMFU,CA50%,DDFU,NHFU

MATING TYPE AI

- LEACHMAN RIGHT TIMESV HYLINE RIGHT TIME 338# HYLINE PRIDE 265# **CHERYLTON STEWIE D19PV** N BAR PRIME TIME D806# SINCLAIR LADY 2P60 4465# IDEAL 4465 OF 6807 4286#
- BEN NEVIS ZEXAR Z86PV BEN NEVIS JEAN X114# **BEN NEVIS GERANIUM D40sv** BOOROOMOOKA RACE R1+96# **BEN NEVIS GERANIUM W035**#

ID NBNI 20

EXAR EXPAND 1241#

Geranium L20 is impeccably bred and is the natural calf of Donor – Geranium D40. Her joining to Beast Mode is extra special and will create extra thump and doing ability. Maternal sister to Lot 107 - H171, Calf by highly sought after Baldridge Beast Mode.

\$

BEN NEVIS HELEN+93#

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Calo Sur Anno	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	3.4	0.8	-5.1	3.2	40	73	91	71	17	1.1	-3.6	46	2.9	-1.4	-0.2	0.3	1.8	-0.11	ABI	DOM	GRN	GRS
ACC	60%	51%	62%	78%	72%	72%	75%	70%	63%	60%	43%	64%	62%	67%	65%	62%	61%	53%	\$96	\$101	\$94	\$97
PERC	42	68	37	24	90	89	92	92	42	84	72	97	91	86	43	59	52	17	86	79	85	87
	Expe	cted Av	verage l	Progen	y Value	s – USA	179607	722 x N	BNL20													
EBV	5.8	2.3	-4.5	3.3	57	99	124	102	18	1.8	-5.1	62	4.5	-1.4	-0.9	0.7	2.2	0.11	\$134	\$127	\$142	\$129
ACC	70%	56%	80%	88%	85%	84%	85%	78%	71%	77%	49%	74%	74%	77%	74%	71%	73%	60%	43%	42%	45%	45%

Purchased by:

Lot 4 BEN NEVIS WILCOOLA L31^{sv}

HBR 23/7/15 AMFU,CAFU,DD3%,NHFU

MATING TYPE AI

LEACHMAN RIGHT TIME^{SV} HYLINE RIGHT TIME 338* HYLINE PRIDE 265* CHERYLTON STEWIE D19*V N BAR PRIME TIME D806* SINCLAIR LADY 2P60 4465* IDEAL 4465 OF 6807 4286* ARDROSSAN ADMIRAL A2^{PV} BANQUET DANDY D274^{PV} BANQUET DREAM V104# BEN NEVIS WILCOOLA G4# BEN NEVIS XEROX X101^{PV} LONGFORD WILCOOLA C14# VERMONT WILCOOLA Z334#

ID NBNL31

L31 is a treasured donor from one of only two introduced female lines here – the Wilcoola family. She leaves us with three retained cracking daughters and Stud Sire Ben Nevis Prospector P412. She adds more dimension in the form of scale, rib and flank and she coats everything in quality. Her maternal brother sold to stud duties last year to Banquet. Her dam (also a Donor), G4 sells as Lot 110 and she is the maternal sister to Lot 85 – K94.

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation						Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-3.6	-4.0	-3.8	6.8	56	102	137	129	15	1.0	-0.3	80	3.8	-2.9	-3.0	0.7	2.3	-0.78	ABI	DOM	GRN	GRS
ACC	62%	53%	65%	79%	72%	72%	76%	71%	64%	63%	45%	67%	64%	68%	66%	64%	63%	56%	\$111	\$105	\$124	\$108
PERC	84	93	60	94	11	7	7	7	69	87	98	6	81	99	97	40	33	1	65	69	51	68
	Expe	cted Av	erage l	Progen	y Value	s – NM	MP15 x	NBNL:	31													
EBV	2.6	3.9	-5.8	4.9	55	103	133	118	19	2.0	-3.0	79	5.1	-1.2	-1.1	0.3	2.5	-0.27	\$129	\$119	\$142	\$124
ACC	63%	51%	79%	83%	73%	72%	74%	70%	62%	62%	42%	65%	62%	66%	63%	62%	61%	53%	37%	34%	38%	37%

Purchased by:

Ś

Lot 5 BEN NEVIS GERANIUM L41*

HBR 26/7/15 AMFU,CA1%,DDFU,NH9% ID NBNL41 MATING TYP	e ai
--	------

LEACHMAN RIGHT TIMESV
HYLINE RIGHT TIME 338#
HYLINE PRIDE 265#
CHERYLTON STEWIE D19PV
N BAR PRIME TIME D806#
SINCLAIR LADY 2P60 4465#
IDEAL 4465 OF 6807 4286#

BANQUET ZEALFUL Z021^{PV} BEN NEVIS DEL PEDRO D3^{SV} BEN NEVIS FLORYX U87# BEN NEVIS GERANIUM G148# BEN NEVIS XEROX X101^{PV} BEN NEVIS AXIS A18# BEN NEVIS GERANIUM Q43+95#

A high growth dam who is extra quiet like her mother with a massive deep rib and scale. She is probably the biggest cow in the sale but sailed throught the drought and is a very good milker from a fantastic female line that stems back to the great E40. Her joining to Beast Mode will be a ripper.

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-6.0	-2.3	-1.6	6.6	51	95	134	122	17	2.4	-1.4	70	2.5	-2.2	-0.7	0.4	1.6	0.04	ABI	DOM	GRN	GRS
ACC	59%	50%	61%	77%	71%	71%	75%	70%	64%	58%	42%	64%	63%	68%	66%	62%	61%	53%	\$105	\$96	\$110	\$105
PERC	92	87	89	93	31	19	10	12	46	26	95	28	94	96	58	54	61	33	75	87	70	75
	Expe	cted Av	verage I	Progen	y Value	s – USA	179607	722 x N	BNL41													
EBV	1.1	0.8	-2.8	5.0	62	111	146	127	18	2.4	-4.0	74	4.3	-1.8	-1.2	0.8	2.1	0.18	\$138	\$124	\$150	\$133
ACC	69%	55%	80%	88%	84%	84%	85%	78%	71%	76%	48%	74%	75%	77%	74%	71%	73%	60%	43%	4 1 %	45%	45%

Purchased by:

.....

\$

LOT 4. BEN NEVIS WILCOOLA L31 and calf

Lot 6 BEN NEVIS KIWI L49*

HBR 19/8/15

5 AMFU,CA1%,DDFU,NHFU

BANQUET ZEALFUL Z021^{PV} BEN NEVIS DEL PEDRO D3^{SV} BEN NEVIS FLORYX U87[#] BEN NEVIS KIWI H201 H210[#]

ID NBNL49

We purchased L49's sire Johno J5 for his lovely quality attributes and his doing ability. This has really has come through in his daughters who are very easy cows to keep. J49 like all the Johno's gives you good flexibility in joining decisions as they are literally bomb proof adding their natural thickness and structural integrity to every scenario.

SITZ ELLUNAS ELITE 3308[#] DALWHINNIE 458N JOHNO J5^{sv} PAPA EQUATOR 2928[#] DALWHINNIE 2928 FLOWER F3^{sv} MILLAH MURRAH FLOWER C69^{sv}

SITZ NEW DESIGN 458N#

BON VIEW NEW DESIGN 1407#

BEN NEVIS ZELLOWSTONE Z2154 BEN NEVIS KIWI B86* BEN NEVIS KIWI Y23*

TACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	1					Ti	raits ob:	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
alera har	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	1.6	5.6	-3.5	3.5	41	76	92	78	16	2.0	-4.0	53	4.7	-0.1	0.7	0.6	0.9	-0.09	ABI	DOM	GRN	GRS
ACC	52%	41 %	46%	76%	68%	67%	73%	66%	52%	48%	35%	57%	56%	63%	61%	56%	55%	38%	\$94	\$102	\$84	\$99
PERC	55	24	65	31	85	84	91	86	56	43	65	88	67	47	19	45	87	19	88	76	91	84
	Expe	cted Av	verage l	Progen	y Value	s – NBM	NP37 x	NBNL4	9													
EBV	3.5	4.3	-5.4	4.9	53	96	121	104	17	2.9	-5.6	68	5.5	-1.1	-0.1	0.7	1.8	0.09	\$130	\$122	\$136	\$126
ACC	53%	43%	55%	74%	67%	67%	70%	64%	54%	55%	35%	58%	57%	63%	60%	57%	57%	42%	33%	30%	35%	34%

Natural

MATING TYPE Natural

Purchased by:

DSK RR PANDA F120sv

DSK PM PANDA R3+96#

Ś

Lot 7 BEN NEVIS JEAN L56*

HBR	13/8/15	AMFU,CAFU,DD	FU,NH6%	ID NBNL56	MATING TYPE
	TC TOTAL 4	410#		J & C APPEAL A10 ^{₽V}	The
P	OSS TOTAL IM	1PACT 745#	RAF	F EMPIRE E269sv	flex
	POSS BLACE	<pre><cap 5116#<="" pre=""></cap></pre>		RAFF DORIS A55#	in e K24
JSRL JA	CK'S JOKER	J1 ^{₽∨}	BEN NEV	VIS JEAN H100#	Ora
	REMITALL H	H RACHIS 21R#		BEN NEVIS XEROX X	101 ^{PV}

There is a stacking of big, strong cows in this outcross pedigree that gives you so much 'lexibility. Her joining to Newsflash keeps that tradition going, adding growth and folding n extra carcase. Her dam H100 sells as Lot 50 and she is a maternal sister to Lot 80 – K24 as well as Ben Nevis Merchant M135 who sold for \$11,000 to the Ingham family at Drange in 2017. L56 was a show heifer for our kids and is a sweetie.

Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation						Ti	raits ob:	served:	BWT, 6	00WT, \$	Scan (E	MA, Rib	, Rump	, IMF)
CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
-9.0	-1.5	-0.3	7.1	55	99	131	123	13	1.8	-2.1	77	4.9	-0.7	-0.7	1.1	1.0	-0.05	ABI	DOM	GRN	GRS
55%	43%	57%	77%	69%	69%	74%	67%	54%	56%	35%	59%	57%	64%	62%	58%	57%	40%	\$102	\$100	\$101	\$105
97	83	96	96	13	12	13	11	82	53	90	10	63	67	58	23	84	23	79	81	79	75
Expe	cted Av	erage l	Progen	y Value	s – NBN	N239 >	NBNL	.56													
-5.2	1.9	-3.0	6.2	57	101	135	126	16	1.3	-2.4	79	4.7	-0.9	-1.5	0.7	1.8	0.05	\$114	\$107	\$121	\$113
61%	48%	69%	83%	76%	75%	76%	71%	59%	60%	38%	65%	63%	67%	66%	62%	61%	47%	37%	35%	38%	38%
	CEDir -9.0 55% 97 Expec -5.2	CEDir CEDtr -9.0 -1.5 55% 43% 97 83 Expe-ted Aw -5.2 1.9	CEDir CEDtr GL -9.0 -1.5 -0.3 55% 43% 57% 97 83 96 Expected Average I -5.2 1.9 -3.0	CEDir CEDtr GL BW -9.0 -1.5 -0.3 7.1 55% 43% 57% 77% 97 83 96 96 Expected Average Progen -5.2 1.9 -3.0 6.2	CEDir CEDtr GL BW 200 -9.0 -1.5 -0.3 7.1 55 55% 43% 57% 77% 69% 97 83 96 96 13 Expected Average Progeny Value -5.2 1.9 -3.0 6.2 57	CEDir CEDtr GL BW 200 400 -9.0 -1.5 -0.3 7.1 55 99 55% 43% 57% 77% 69% 69% 97 83 96 96 13 12 Expected Average Progeny Values – NBN -5.2 1.9 -3.0 6.2 57 101	CEDir CEDtr GL BW 200 400 600 -9.0 -1.5 -0.3 7.1 55 99 131 55% 43% 57% 77% 69% 69% 74% 97 83 96 96 13 12 13 Expected Average Progeny Values - NBNN239 X -5.2 1.9 -3.0 6.2 57 101 135	CEDir CEDtr GL BW 200 400 600 MCW -9.0 -1.5 -0.3 7.1 55 99 131 123 55% 43% 57% 77% 69% 69% 74% 67% 97 83 96 96 13 12 13 11 Expected Average Progeny Values – NBNN239 × NBNL -5.2 1.9 -3.0 6.2 57 101 135 126	-9.0 -1.5 -0.3 7.1 55 99 131 123 131 55% 43% 57% 77% 69% 69% 74% 67% 54% 97 83 96 96 13 12 13 11 82 Expected Average Progeny Values - NBNN239 x NBNL56 -5.2 1.9 -3.0 6.2 57 101 135 126 16	CEDir CEDtr GL BW 200 400 600 MCW Milk SS -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 55% 43% 57% 77% 69% 69% 74% 67% 54% 56% 97 83 96 96 13 12 13 11 82 53 Expected Average Progeny Values - NBNN239 x NBNL56 -5.2 1.9 -3.0 6.2 57 101 135 126 16 1.3	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 55% 43% 57% 77% 69% 69% 74% 67% 54% 56% 35% 97 83 96 96 13 12 13 11 82 53 90 Expected Average Progeny Values - NBNN239 × NBNL5 -5.2 1.9 -3.0 6.2 57 101 135 126 16 1.3 -2.4	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 55% 43% 57% 77% 69% 69% 74% 67% 54% 56% 35% 59% 97 83 96 96 13 12 13 11 82 53 90 10 Expected Average Progeny Values - NBNN239 × NBNL5 -5.2 1.9 -3.0 6.2 57 101 135 126 16 1.3 -2.4 79	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 4.9 55% 43% 57% 77% 69% 69% 74% 67% 54% 56% 35% 59% 57% 97 83 96 96 13 12 13 11 82 53 90 10 63 Expected Average Progeny Values - NBN239 x NBNL56 -5.2 1.9 -3.0 6.2 57 101 135 126 16 1.3 -2.4 79 4.7	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 4.9 -0.7 55% 43% 57% 77% 69% 69% 74% 67% 56% 35% 59% 57% 64% 97 83 96 96 13 12 13 11 82 53 90 10 63 67 Expected Average Progeny Values - NBN239 x NBNL56 -5.2 1.9 -3.0 6.2 57 101 135 126 16 1.3 -2.4 79 4.7 -0.9	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 4.9 -0.7 -0.7 55% 43% 57% 77% 69% 69% 74% 67% 54% 56% 35% 59% 57% 64% 62% 97 83 96 96 13 12 13 11 82 53 90 10 63 67 58 Expected Average Progeny Values - NBN239 × NBNL5 -5.2 1.9 -3.0 6.2 57 101 135 126 16 1.3 -2.4 79 4.7 -0.9 -1.5	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 4.9 -0.7 -0.7 1.1 55% 43% 57% 77% 69% 69% 74% 67% 54% 56% 35% 59% 57% 64% 62% 58% 97 83 96 96 13 12 13 11 82 53 90 10 63 67 58 23 Expected Average Progene Values - NBN239 × NBN239 NBN239 × NBN239 NBN239	CEDir GL BW 200 400 600 MCW Mik SS DTC CWT EMA RIB P8 RBY IMF -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 4.9 -0.7 -0.7 1.1 1.0 55% 43% 57% 77% 69% 69% 74% 67% 56% 35% 59% 57% 64% 62% 58% 57% 97 83 96 96 13 12 13 11 82 53 90 10 63 67 58 23 84 Expected Average Progeny Values - NBN239 × NBNL59 -5.2 1.9 -3.0 6.2 57 101 135 126 16 1.3 -2.4 79 4.7 -0.9 -1.5 0.7 1.8	CEDir GL BW 200 400 600 MCW Mik SS DTC CWT EMA RIB P8 RBY IMF NFL-F -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 4.9 -0.7 -0.7 1.1 1.0 -0.05 55% 43% 57% 77% 69% 69% 74% 67% 56% 35% 59% 57% 64% 62% 58% 57% 40% 97 83 96 96 13 12 13 11 82 53 90 10 63 67 58 23 84 23 Expected Average Progeny Values - NBN239 x NBNL56 -5.2 1.9 -3.0 6.2 57 101 135 126 16 1.3 -2.4 79 4.7 -0.9 -1.5 0.7 1.8 0.05	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F SS -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 4.9 -0.7 -0.7 1.1 1.0 -0.05 ABI 55% 43% 57% 77% 69% 69% 74% 67% 54% 56% 35% 57% 64% 62% 58% 57% 40% \$102 97 83 96 96 13 12 13 11 82 53 90 10 63 67 58 23 84 23 79 Expected Average Progeny Values - NBN239 × NBNL39 NBNL39 NBNL39 NBNL39 A.7 9 4.7 -0.9 -1.5 0.7 1.8 0.05 \$114	CEDir GL BW 200 400 600 MCW Mik SS DTC CWT EMA RIB P8 RBY IMF NFLF Selection -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 4.9 -0.7 -0.7 1.1 1.0 -0.05 ABI DOM 55% 43% 57% 77% 69% 69% 74% 67% 56% 35% 59% 57% 64% 62% 58% 57% 40% \$102 \$100 97 83 96 96 13 12 13 11 82 53 90 10 63 67 58 23 84 23 79 81 Expected Average Progeny Values - NBN239 × NBNL50 Selection 4.7 -0.9 -1.5 0.7 1.8 0.05 \$114 \$107	CEDir GL BW 200 400 600 MCW Mik SS DTC CWT EMA RIB P8 RBY IMF NFLF Selection Indexed -9.0 -1.5 -0.3 7.1 55 99 131 123 13 1.8 -2.1 77 4.9 -0.7 -0.7 1.1 1.0 -0.05 ABI DOM GRN 55% 43% 57% 77% 69% 69% 74% 67% 56% 35% 59% 57% 64% 62% 58% 57% 40% \$102 \$101

Purchased by:

Lot 8 BEN NEVIS KIWI L60*

HBR 3/8/15 AMFU,CAFU,DDFU,NHFU

MATING TYPE AI

B/R NEW DIMENSION 7127^{sv} TE MANIA BARTEL B219^{sv} TE MANIA JEDDA W85^{ss} AYRVALE BARTEL E7^{sv} MYTTY IN FOCUS^{ss} EAGLEHAWK JEDDA B32^{sv} EAGLEHAWK JEDDA Z48^{ss}

POSS TOTAL IMPACT 745* POSS BLACKCAP 5116* BEN NEVIS FERGIE J49* VERMILION YELLOWSTONE*

ID NBNL60

TC TOTAL 410#

BEN NEVIS JEAN A36 A37#

BEN NEVIS JEAN U46#

BEN NEVIS FERGIE B44# BEN NEVIS FERGIE W091# This is a genetic combination that has worked really well for us where we have been able to fold in extra levels of IMF without sacrificing doability. Her Newsflash calf will take that a step further providing a uniqueness to her pedigree and extra shape.

\$

IACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, \$	Scan (E	MA, Rib	, Rump	, IMF)
Calle Full address	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	\$S
EBV	3.2	8.7	-4.1	3.5	46	75	95	78	16	2.0	-7.8	57	5.9	-1.0	-0.1	0.6	2.3	0.19	ABI	DOM	GRN	GRS
ACC	63%	58%	63%	77%	72%	72%	76%	71%	63%	62%	53%	66%	64%	70%	68%	65%	65%	58%	\$123	\$115	\$132	\$116
PERC	44	6	55	31	63	85	87	85	58	43	6	77	45	76	40	45	33	53	41	36	40	47
	Expe	cted Av	verage l	Progen	y Value	s – NBI	NN239 3	x NBNL	.60													
EBV	1.0	7.0	-4.9	4.4	52	89	118	104	17	1.4	-5.2	69	5.2	-1.0	-1.2	0.4	2.4	0.17	\$125	\$114	\$137	\$119
ACC	65%	55%	72%	83%	78%	77%	77%	73%	64%	63%	47%	68%	67%	70%	69%	66%	65%	56%	40%	39%	4 1 %	41%

Purchased by:

Lot 9 BEN NEVIS JEAN L65*

HBR	6/8/	15	AMFL	J,CA7%	,DDFU,N	HFU	ID	NBNL	55	MAT	ING TY	PE AI							
	REMI	ITALL N	IGHTHA	WK 37	N#		тс то	TAL 410)#					0				0	er deep, soft rib and quarter.
RE	EMITAL	L H RAC	HIS 21F	\ #		PC	OSS TOT	AL IMPA	ACT 745*										e same combination that
	HENI	DERSON	MISSIE	32'02#			POSSI	BLACKCA	AP 5116#			softness					ale avera	iging \$13	8,750. This blend creates extra
BEN N	NEVIS JUDO J158 ^{sv} BEN NEVIS JEAN J124#											30111633		255 0110 0	Joability	•			
	TE MANIA INFINITY 04 379 AB* BEN NEVIS JEAN J124*																		
BE	EN NEV	IS GER/	NIUM	G26 ^{sv}		BE	N NEVI	S JEAN (G3#										
	BEN	NEVIS (GERANI	UM E79	#		BEN N	IEVIS JE	AN C123	8#									
TACE	Septe	mber 2	020 Tra	insTasi	nan Ang	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (EMA, Rib, Rump, IMF)
Transformate Argun Calify Francesion	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	Selection Indexes

Calls Furnishing	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DIC	CWI	EMA	RIB	P8	RBY	IMF	NH-F	S	election	Indexe	es
EBV	-4.4	5.4	-0.2	3.8	45	81	94	75	13	2.4	-5.1	55	2.1	2.3	1.5	-0.6	1.5	0.53	ABI	DOM	GRN	GRS
ACC	54%	42%	58%	76%	70%	70%	74%	67%	56%	54%	35%	60%	60%	66%	64%	59%	58%	47%	\$89	\$98	\$82	\$92
PERC	87	26	97	38	69	67	89	89	78	26	43	82	96	3	8	90	65	89	91	84	92	92
	Expe	cted Av	/erage	Progen	y Value	s – USA	A17960	722 x N	BNL65													
EBV	1.9	4.6	-2.1	3.6	59	104	126	104	16	2.4	-5.9	67	4.1	0.5	-0.1	0.3	2.0	0.43	\$130	\$125	\$136	\$126

Purchased by:

ċ

Lot 10 BEN NEVIS GERANIUM L66*

HBR	25/7	/15	AMFL	J,CAFU,	DDFU,N	HFU	ID	NBNL	56	MAT	NG TY	PE AI										
	B/R N	NEW DI	MENSIC	ON 7127	sv		TE MA	NIAUN	ILIMITEI	D U327						cow wit						
Т	E MANI	A BARTI	EL B219	PV		TE	MANIA	INFINI	TY 04 3	79 AB#						n Donoi						
	TE M/	ANIA JEC	DA W8	5#			TE MA	NIA 9510)2#			excellen	t joining	. we hav	/e retain	ed all of	ner you	nger sist	ers MI5	0, NZ 10	and PZ4	43.
AYRVA	LE BAR	TEL E7 ^P	v		I	BEN NE	VIS GE	RANIUI	4 J126#													
	MYT	TY IN FO	CUS#				BEN N	IEVIS DI	EL PEDR	O D3sv												
E.	AGLEHA	WK JEC	DA B32	sv		BE	N NEVI	S GERAI	NIUM G	140#												
	EAGL	EHAW	(JEDDA	Z48#			BEN N	IEVIS G	ERANIU	M D55⁵												
TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation				-		Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
tariana kepa Sala haladan	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	4.4	4.8	-4.3	3.6	48	84	110	84	19	2.6	-7.6	64	3.7	-0.6	0.7	-0.6	2.5	0.42	ABI	DOM	GRN	GRS

Calls Francisco Calls Francisco	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es 🗧
EBV	4.4	4.8	-4.3	3.6	48	84	110	84	19	2.6	-7.6	64	3.7	-0.6	0.7	-0.6	2.5	0.42	ABI	DOM	GRN	GRS
ACC	63%	59%	63%	78%	73%	73%	77%	72%	67%	62%	54%	67%	65%	70%	69%	66%	65%	60%	\$128	\$114	\$138	\$121
PERC	35	31	51	33	52	56	56	76	27	19	8.0	52	83	64	19	90	26	81	30	39	32	34
	Expe	cted Av	verage	Progen	y Value	s – NBI	NN239 2	x NBNL	.66													
EBV	1.6	5.1	-5.0	4.5	53	93	125	107	19	1.7	-5.1	73	4.1	-0.8	-0.8	-0.2	2.5	0.28	\$127	\$114	\$140	\$121
ACC	65%	56%	72%	84%	78%	77%	78%	73%	66%	63%	48%	69%	67%	70%	70%	66%	65%	57%	41 %	39%	42%	41 %

Purchased by:

.....

LOT 9. BEN NEVIS JEAN L65

LOT 12. BEN NEVIS DORMIST L73

Lot 11 BEN NEVIS FLORYX L72*

HBR 25/7/15 AMFU,C

AMFU,CAFU,DDFU,NHFU

MATING TYPE AI

B/R NEW DIMENSION 7127^{sv} TE MANIA BARTEL B219^{pv} TE MANIA JEDDA W85[#] AYRVALE BARTEL E7^{pv} MYTTY IN FOCUS[#] EAGLEHAWK JEDDA B32^{sv} EAGLEHAWK JEDDA Z48[#] REMITALL NIGHTHAWK 37N# REMITALL H RACHIS 21R# HENDERSON MISSIE 32'02# BEN NEVIS FLORYX J190°V BEN NEVIS FRONTIER B88^{SV} BEN NEVIS FLORYX F162# BEN NEVIS FLORYX U87#

ID NBNL72

We just love this cow and she has extra thump and performance we strive for while maintaining type and softness. Her Dam was a donor and her full brother was identified as the top L calf in 2016. We have retained all three of her daughters and her maternal sister. This is the perfect joining for her and creates a perfectly unique, outcross pedigree that boasts relevant and impressive performance.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, 9	Scan (E	MA, Rib	, Rump	, IMF)
~~	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	0.5	7.9	-1.9	5.9	57	103	137	115	17	2.6	-6.6	82	5.5	-2.2	-1.5	1.3	2.1	0.28	ABI	DOM	GRN	GRS
ACC																\$150	\$131	\$168	\$141			
PERC															4	4	6	3				
	Expe	cted Av	erage l	Progen	y Value	s – NBM	N239	K NBNL	72													
EBV	-0.4	6.6	-3.8	5.6	58	103	139	122	18	1.7	-4.6	82	5.0	-1.6	-1.9	0.8	2.3	0.21	\$138	\$122	\$155	\$131
ACC	64%	55%	72%	83%	77%	76%	77%	72%	64%	63%	46%	67%	66%	69%	68%	65%	63%	55%	40%	38%	41%	40%

Purchased by:

HBR

Lot 12 BEN NEVIS DORMIST L73*

1/8/15 AMFU,CAFU,DD2%,NH2%

MATING TYPE Natural

TC TOTAL 410# POSS TOTAL IMPACT 745# POSS BLACKCAP 5116# JSRL JACK'S JOKER J1PV REMITALL H RACHIS 21R# DSK RR PANDA F120^{SV} DSK PM PANDA R3+96#

RAFF EMPIRE E269^{SV} RAFF DORIS A55[#] BEN NEVIS DORMIST H124[#] KOUPALS B&B PRECISION 0068[#] BEN NEVIS DORMIST C75[#] BEN NEVIS DORMIST Y82[#]

ID NBNI 73

I & C APPEAL A10PV

Dormist L73 is a maternal brother to the \$12,000 Kevlar K6 who sold to the Benson family at Walcha in 2015. She has the outlook and extra style and softness of the two great cows in her immediate pedigree which include her Lot 51 dam – H124 and the renowned DSK Panda.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
Television for	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-10.1	-3.7	0.2	5.7	46	81	98	92	13	0.5	-1.9	61	4.2	-0.8	-1.0	0.8	1.3	-0.2	ABI	DOM	GRN	GRS
ACC	55%	43%	57%	77%	70%	70%	75%	68%	56%	56%	35%	60%	59%	66%	64%	59%	58%	41%	\$73	\$86	\$66	\$77
PERC	98	92	98	81	62	69	84	61	81	96	92	62	76	70	67	35	74	11	98	96	97	98
	Expe	cted Av	erage l	Progen	y Value	s – NBI	N239	K NBNL	.73													
EBV	-5.7	0.8	-2.7	5.5	52	92	119	111	16	0.6	-2.3	71	4.4	-0.9	-1.7	0.5	1.9	-0.03	\$100	\$100	\$104	\$99
ACC	61%	48%	69%	83%	77%	76%	77%	71%	60%	60%	38%	65%	64%	68%	67%	63%	61%	47%	37%	35%	38%	38%

Purchased by:

Lot 13 BEN NEVIS GERANIUM L83*

HBR	24/8/15	AMFU,CA2%,DDFU,NH18%	ID NBNL83	
-----	---------	----------------------	-----------	--

MATING TYPE AI

LEACHMAN RIGHT TIME^{sv} HYLINE RIGHT TIME 338# HYLINE PRIDE 265# CHERYLTON STEWIE D19^{pv} N BAR PRIME TIME D806# SINCLAIR LADY 2P60 4465# IDEAL 4465 OF 6807 4286#

BEN NEVIS XEROX X101⁹ BEN NEVIS GERANIUM Q55+95⁵⁰ BEN NEVIS AXIS A18# PINE CREEK NUDGE N36+93#

C A FUTURE DIRECTION 5321#

BEN NEVIS GERANIUM Q43+95* BEN NEVIS GERANIUM L6+91* We just love the thump and outlook of Geranium L83. She is impeccably bred and descends back to Geranium E40 and she displays all the extra power and growth of her genetic combination. We have retained a beautiful heifer calf, and expect a super calf to her by Podium. She is a maternal sister to Lot 106 – H169 and Lot 41 – J145.

Ś

TACE	Septe	mber 2	2020 Tra	insTasr	man An	gus Ca	ttle Eva	luation	I					Ti	raits obs	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
Technologie Action	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	-4.2	-3.3	-2.0	5.9	47	88	114	98	17	1.8	-0.7	63	3.7	-1.6	0	0.6	1.4	-0.11	ABI	DOM	GRN	GRS
ACC																\$92	\$96	\$88	\$96			
PERC	86	90	86	85	55	43	45	49	43	53	97	54	83	89	37	45	70	17	89	87	89	88
	Expe	cted Av	erage	Progen	y Value	s – NBI	NP242 >		83													
EBV	0.2	1.3	-4.3	4.8	51	95	123	101	22	3.3	-4.2	71	6.9	-1.7	-0.7	1.3	2.1	0.23	\$129	\$120	\$138	\$124
ACC	58%	50%	63%	75%	70%	70%	72%	67%	61%	61%	43%	63%	61%	66%	64%	62%	61%	53%	36%	35%	38%	37%

Purchased by:

THE GENES ARE STRONG IN THE JEAN FAMILY

Lot 14 BEN NEVIS JEAN H215^{sv}

HBR 15/10/12 AMFU,CAFU,DDFU,NHF

ID NBNH215

MATING TYPE Natural

S A V FINAL ANSWER 0035" HARB PENDLETON 765 J H^{SV} H A R B BLACK LADY 375 J H" BEN NEVIS FRONTROW F41^{SV} BALDRIDGE NEBRASKA 901^{SV} BEN NEVIS PERFECTION A103" BEN NEVIS PERFECTION Y47" PAPA EQUATOR 2928# BULLIAC X-RAY X10# BULLIAC FLORA P8+94# BEN NEVIS JEAN D71# BEN NEVIS XEROX X101PV BEN NEVIS JEAN B21# BEN NEVIS JEAN U74# Every now and then you get a special cow that you talk about and refer to for generations to come that shape and defines your breeding program. For us that cow is Jean H215. Her first calf K80 was as big as her by the time she weaned her and while not a big cow herself she packs a hell of punch. She boasts a uniquely Ben Nevis pedigree and the extra spunk and pride in her carriage and her progeny have the X-factor. In the flesh she is soft, long and thick. She is the dam of Jean K80 who produced the \$32,000 Metamorphic to Banquet, Fernleigh and Twin Oaks (NZ), as well as Ben Nevis Newsflash who sold to Bannaby at our 2018 sale for \$24,000 and our additional Stud Sire Ben Nevis Primus P57 (at stud at merit Farms). She is a prolific bull producer but we fortunately have 6 very special retained daughters. She sells with our highest recommendation. She sells PTIC to Monarch and it will be a ripper.

TACE	Septe	mber 2	020 Tra	nsTasr	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
Calls Francisco	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	+S
EBV	10.4	7.1	-5.8	4.0	56	96	139	122	22	0	0.1	80	2.5	1.4	-0.3	-0.3	0.4	-0.28	ABI	DOM	GRN	GRS
ACC																\$102	\$99	\$89	\$113			
PERC	4	13	26	43	12	17	6	12	10	99	99	6	94	11	46	82	97	7	79	83	88	56
	Expe	cted Av	verage	Progen	y Value	s – NBI	VM128	x NBNI	1215													
EBV	7.7	5.3	-5.8	3.5	50	88	123	110	18	1.2	-2.2	71	3.2	0.8	0.3	-1.0	1.6	0.13	\$106	\$100	\$103	\$110
ACC	65%	52%	69%	86%	80%	80%	81%	75%	66%	69%	45%	70%	69%	72%	71%	68%	66%	56%	4 1 %	38%	43%	42%

Purchased by:

Son Newsflash N239 at 11 months

Son Primus P57 at 18 months

H215 as a two year old

Lot 15 BEN NEVIS JEAN K80*

HBR 7/8/14 AMFU,CAFU,DDFU,NHFU

FU ID NBNK80

MATING TYPE Natural

S A F FOCUS OF E R[#] MYTTY IN FOCUS[#] MYTTY COUNTESS 906[#] BEN NEVIS ERITREA E6^{sy} BULLIAC X-RAY X10[#] BEN NEVIS DORMIST C46[#] BEN NEVIS DORMIST A61[#] HARB PENDLETON 765 J H^{5V} BEN NEVIS FRONTROW F41^{5V} BEN NEVIS PERFECTION A103* BEN NEVIS JEAN H215^{5V} BULLIAC X-RAY X10* BEN NEVIS JEAN D71* BEN NEVIS JEAN B21* Jean K80 offers a very rare combination of quality, outcross pedigree and pure power to absolutely light up your breeding program. It's not often you find a big cow with so much dimension that is so soft, with a fine silky coat. K80 is the dam of Metamorphic (who sold to a syndicate including Banquet, Fernleigh and Twin Oaks) whose first 21 calves at auction have averaged over \$15,000. Metamorphic features as join sire in this sale and offers the power and maternal ability of his dam with the reliable carcase of Bartel. She sells PTIC to Paratrooper.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
foreinere konst Sein forbaltete	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	5.3	3.7	-0.5	5.4	62	110	151	136	19	1.7	-1.0	85	3.7	-0.7	-2.1	0.7	0.7	-0.15	ABI	DOM	GRN	GRS
ACC	62%	48%	66%	81%	76%	75%	78%	72%	64%	65%	39%	66%	64%	70%	68%	64%	63%	48%	\$121	\$115	\$120	\$126
PERC	29	41	96	76	2	2	2	4	27	58	96	2	83	67	90	40	92	14	45	36	57	22
	Expe	cted Av	erage I	Progen	y Value	s – NM	MP15 x	NBNK	80													
EBV	7.1	7.8	-4.2	4.2	58	107	140	121	21	2.3	-3.4	81	5.0	-0.1	-0.6	0.3	1.7	0.05	\$134	\$124	\$140	\$133
ACC	63%	48%	79%	84%	75%	73%	75%	71%	62%	63%	39%	65%	62%	67%	64%	62%	61%	49%	37%	33%	38%	37%

Purchased by:

K80 with her son Norman

Son Metamorphic at 11 months

Lot 16 BEN NEVIS GERANIUM L89#

HBR 18/8/15 AMFU,CAFU,DD4%,NH3%

MATING TYPE AI

LEACHMAN RIGHT TIME^{SV} HYLINE RIGHT TIME 338" HYLINE PRIDE 265" CHERYLTON STEWIE D19PV N BAR PRIME TIME D806" SINCLAIR LADY 2P60 4465" IDEAL 4465 OF 6807 4286"

BEN NEVIS XEROX X101[®] BEN NEVIS GERANIUM Q55+95^{sv} BEN NEVIS GERANIUM C67#

C A FUTURE DIRECTION 5321*

ID NBNL89

Geranium L89 is so beautifully bred to maintain traditional Angus quality traits while remaining relevant to modern markets. We just love her beautiful head and body capacity. Her maternal brother Ben Nevis Motivator M109 sold for \$12,000 in 2017 to Geoff and Sarah Day.

DUNOON REAGAN R093+	96 ^{sv}
BEN NEVIS GERANIUM X009 X	9#
BEN NEVIS GERANIUM VO8	39#

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-6.2	-1.2	-1.3	5.5	42	78	96	88	16	1.2	-2.2	55	3.9	-2.4	-0.5	0.5	2.2	-0.09	ABI	DOM	GRN	GRS
ACC	60%	51%	63%	78%	72%	72%	76%	70%	64%	60%	44%	64%	63%	68%	67%	63%	62%	54%	\$87	\$93	\$90	\$86
PERC	92	81	91	78	81	78	86	71	53	81	90	84	80	97	52	49	36	19	93	91	87	95
	Expe	cted Av	verage I	Progen	y Value	s – NBI	N239 3	NBNL	.89													
EBV	-3.8	2.1	-3.5	5.4	50	90	118	109	18	1.0	-2.4	68	4.2	-1.7	-1.4	0.4	2.4	0.03	\$107	\$103	\$116	\$104
ACC	63%	52%	72%	84%	78%	77%	77%	72%	64%	62%	43%	67%	66%	69%	69%	65%	63%	54%	39%	37%	40%	40%

Purchased by:

\$

Lot 17 BEN NEVIS GERANIUM L95*

HBR 10/8/15 AMFU,CA1%,DDFU,NHFU ID NBNL95 MATING TYPE Natural

TE MANIA UNLIMITED U3271[#] TE MANIA INFINITY 04 379 AB[#] TE MANIA 95102[#] BEN NEVIS GAMEMAKER G56^{PV} BANQUET ZEALFUL Z021^{PV} BEN NEVIS GERANIUM E127^{SV} BEN NEVIS GERANIUM T101[#] PAPA EQUATOR 2928# BULLIAC X-RAY X10# BULLIAC FLORA P8+94# BEN NEVIS GERANIUM D76# BEN NEVIS ZEXAR Z86^{PV} BEN NEVIS GERANIUM B77# BEN NEVIS GERANIUM Z46# Another powerful cow with a strong head and constitution who has pure Ben Nevis blood on both sides stacked with some of the best cows in our herd including B77 who goes back to Donor – E40, and Donor E127. She has one retained daughter and had an absolute stonker of a bull calf in this years sale who sold to long term clients Ros and Craig Bulloch at Braidwood for \$12,000.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation						Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
television ter	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	0.4	-0.3	-5.2	4.9	42	77	98	101	9	1.5	-3.8	55	3.6	-1.8	-1.3	0.7	1.6	0.28	ABI	DOM	GRN	GRS
ACC	55%	46%	58%	77%	69%	69%	74%	67%	56%	52%	39%	59%	58%	65%	63%	59%	57%	44%	\$96	\$99	\$99	\$95
PERC	63	76	36	65	83	81	83	43	96	68	68	84	84	92	75	40	61	65	86	83	81	89
	Expe	cted Av	erage l	Progen	y Value	s – USA	179607	722 x N	BNL95													
EBV	4.3	1.8	-4.6	4.1	58	101	128	117	14	2.0	-5.2	66	4.8	-1.6	-1.5	0.9	2.1	0.3	\$134	\$126	\$145	\$128
ACC	67%	53%	78%	88%	83%	83%	85%	76%	67%	73%	47%	72%	72%	76%	73%	70%	71%	56%	42%	40%	44%	43%

Purchased by:

Lot 18 BEN NEVIS GERANIUM L96*

HBR	7/9/15	AMFU,CAFU,DD3%,NHFU	ID NBNL96	MATING TYPE AI

LEACHMAN RIGHT TIME^{SV} HYLINE RIGHT TIME 338" HYLINE PRIDE 265" CHERYLTON STEWIE D19°V N BAR PRIME TIME D806" SINCLAIR LADY 2P60 4465" IDEAL 4465 OF 6807 4286" HOFF LIMITED EDITION S C 594" DSK HLE AHEAD OF THE PACK A57^{SV} DSK HR SHADY LADY W62" BEN NEVIS GERANIUM D83" FORRES NEW DESIGN U95"

FORRES NEW DESIGN U95# BEN NEVIS GERANIUM Y108#

BEN NEVIS GERANIUM T101#

Geranium L96 is a bigger framed cow with more depth and volume who is closely descended from the great Donor – E40 with a retained heifer and a cracking bull at this years sale. Her maternal sister H166 sells as Lot 52.

\$

\$

TACE	Septe	mber 2	2020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	l					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
frantisense konst Callo Francisco	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	-5.4	0.7	-2.8	5.7	44	81	104	96	10	0.7	-1.3	53	3.4	-2.0	0.1	0.4	2.2	0.15	ABI	DOM	GRN	GRS
ACC	59%	51%	67%	77%	70%	69%	74%	69%	61%	58%	42%	62%	62%	67%	65%	61%	61%	51%	\$95	\$96	\$99	\$94
PERC	90	68	76	81	74	68	72	52	94	93	95	88	86	94	34	54	36	48	87	87	81	90
	Expe	cted Av	verage	Progen	y Value	s – NBI	N239 3	NBNL	.96													
EBV	-3.4	3.0	-4.2	5.5	51	92	122	113	15	0.7	-2.0	67	4.0	-1.5	-1.1	0.3	2.4	0.15	\$111	\$105	\$120	\$108
ACC	63%	52%	74%	83%	77%	75%	76%	72%	63%	61%	42%	66%	66%	69%	68%	64%	63%	52%	38%	37%	39%	39%

Purchased by:

Lot 19 BEN NEVIS GERANIUM L109#

HBR 18/8/15 A

AMFU,CA2%,DDFU,NHFU ID NBNL109

MATING TYPE AI

BON VIEW NEW DESIGN 208^{5V} TC TOTAL 410[#] TC ERICA EILEEN 2047[#] **POSS TOTAL IMPACT 745[#]** CONNEALY LEAD ON[#] POSS BLACKCAP 5116[#] POSS BLACKCAP 205[#] TE MANIA UNLIMITED U3271" TE MANIA INFINITY 04 379 AB" TE MANIA 95102" BEN NEVIS GERANIUM G27# BEN NEVIS ZEXAR Z86" BEN NEVIS GERANIUM E128" BEN NEVIS GERANIUM X87" Impact has left us with some very productive females who are larger in frame and big ribbed like L109. She is easy keeping and will produce a fabulous Beast Mode calf. Her maternal brother Ben Nevis Maverick M15 sold for \$11,000 in our 2017 sale to Kanimbla Grazing Co and we have one retained daughter.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	I					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (E	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	-7.3	0.9	-2.3	4.7	48	81	100	101	7	2.6	-6.3	56	5.1	-0.9	0	0.2	1.7	0.12	ABI	DOM	GRN	GRS
ACC	62%	53%	68%	78%	72%	72%	76%	71%	64%	62%	48%	65%	64%	69%	67%	64%	63%	53%	\$97	\$97	\$98	\$95
PERC	94	67	82	60	48	69	79	44	99	19	22	81	60	73	37	64	56	43	85	86	82	89
	Expe	cted Av	erage I	Progen	y Value	s – USA	179607	722 x N	BNL10	9												
EBV	0.5	2.4	-3.1	4.0	61	103	129	116	13	2.5	-6.5	67	5.6	-1.1	-0.8	0.7	2.1	0.22	\$134	\$125	\$144	\$128
ACC	71%	57%	83%	88%	85%	84%	86%	78%	71%	78%	51%	75%	75%	78%	75%	72%	74%	60%	44%	43%	46%	46%

Purchased by:

Ś

Lot 20 BEN NEVIS FERGIE L129*

AMFU,CAFU,DDFU,NHFU MATING TYPE Natural HBR 3/9/15 ID NBNI 129 TC TOTAL 410# I & C APPEAL A10PV A lovely, long bodied, clean fronted female who we have one retained heifer from. We are very excited about the first Podium calves to be born adding further docility, POSS TOTAL IMPACT 745* RAFF EMPIRE E269sv thickness and carcase. POSS BLACKCAP 5116# RAFE DORIS A55* JSRL JACK'S JOKER J1PV **BEN NEVIS FERGIE H96**# **REMITALL H RACHIS 21R# VERMILION YELLOWSTONE#** DSK RR PANDA F120sv BEN NEVIS FERGIE B44# DSK PM PANDA R3+96# **BEN NEVIS FERGIE W091**# TACE September 2020 TransTasman Angus Cattle Evaluation

Traits observed: BWT, 600WT, Scan (EMA, Rib, Rump, IMF) CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F Selection Indexes EBV -9.8 -2.0 -1.0 6.3 45 77 95 93 10 0.8 -2.9 57 4.0 -0.8 -0.3 0.8 -0.09 GRN GRS 1.1 ABI DOM 54% 43% 57% 76% 69% 69% 74% 67% \$85 ACC 55% 56% 36% 59% 59% 65% 63% 59% 57% 42% \$74 \$66 \$78 97 85 69 81 87 59 95 78 79 70 35 97 97 98 PERC 93 90 91 82 46 81 19 98 Expected Average Progeny Values - NBNP242 **NBNL129** EBV -2.7 1.9 50 89 113 99 2.8 -5.3 67 7.0 -1.3 -0.8 1.4 1.9 0.24 \$120 \$114 \$127 \$115 -3.8 5.0 18 ACC 55% 46% 61% 75% 69% 69% 71% 66% 57% 59% 39% 61% 60% 65% 63% 61% 59% 47% 35% 33% 36% 36%

Purchased by:

Lot 21 BEN NEVIS GERANIUM L156*

HBR 28/8/15 AMFU,CAFU,DDFU,NH10%

MATING TYPE AI

B/R NEW DIMENSION 7127^{sv} TE MANIA BARTEL B219^{pv} TE MANIA JEDDA W85[#] AYRVALE BARTEL E7^{pv} MYTTY IN FOCUS[#] EAGLEHAWK JEDDA B32^{sv} EAGLEHAWK JEDDA Z48[#] BT EQUATOR 395M[#] MILLAH MURRAH EQUATOR D78^{PV} MILLAH MURRAH RADO Y119[#] BEN NEVIS GERANIUM J135[#] BEN NEVIS XEROX X101^{PV} BEN NEVIS GERANIUM C101[#] BEN NEVIS GERANIUM Y38[#]

ID NBNL156

Geranium L156 has a great set of arithmetic which has been well earned. She has good skin and type combined with an outcross joining to Newsflash which will slot her progeny right in the pocket.

TACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	election	n Indexe	s
EBV	6.7	9.2	-5.7	3.1	48	86	111	94	22	1.8	-7.3	70	4.7	-0.6	0.1	0.1	2.2	0.02	ABI	DOM	GRN	GRS
ACC	62%	57%	68%	75%	70%	70%	75%	70%	63%	61%	53%	64%	64%	69%	67%	64%	64%	59%	\$131	\$119	\$140	\$124
PERC	20	4	28	22	49	52	54	58	12	53	10	27	67	64	34	68	36	31	25	23	30	26
	Expe	cted Av	verage I	Progen	y Value	s – NBM	NN239 3	(NBNL	156													
EBV	2.7	7.3	-5.7	4.2	53	94	125	112	20	1.3	-5.0	76	4.6	-0.8	-1.1	0.2	2.4	0.08	\$129	\$116	\$141	\$123
ACC	64%	55%	74%	82%	77%	76%	77%	72%	64%	63%	47%	67%	67%	70%	69%	65%	64%	56%	40%	38%	41 %	41 %

Purchased by:

Ś

Lot 22 BEN NEVIS JEAN L228#

HBR	18/8/15	AMFU,CAFU,DDFU,N	IHFU ID NBNL228	MATING TYPE ET
	CONNEALY	CONSENSUS#	J & C APPEAL A10 ^{₽V}	Jean L2
(CONNEALY CO	NSENSUS 7229 ^{sv}	RAFF EMPIRE E269 ^{sv}	followi

BLUE LILLY OF CONANGA 16[#] CONNEALY COMRADE 1385[#] G A R NEW DESIGN 5050[#] HAPPY GEE OF CONANGA 919[#] HAP GINA OF CONANGA 260 4965[#]

J & C APPEAL A10^{PV} RAFF EMPIRE E269^{SV} RAFF DORIS A55[#] BEN NEVIS JEAN H103^{SV} BEN NEVIS XEROX X101^{PV} BEN NEVIS JEAN B16[#] BEN NEVIS JEAN U32[#] Jean L228 is an Embryo daughter of our superstar Donor Jean H103 (selling as the following Lot) who is showing so much promise. She came out of the blocks hard with two absolutely cracking bull calves back to back in N111 and P137. Unfortunately she hasn't had a daughter but we have plenty of siblings that are outlined in her dams comments in the following Lot.

	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	l .					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
turcionae Argo Calle-Futurion	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	6.8	-1.0	-5.7	3.5	53	94	111	76	18	1.2	-3.2	68	6.9	-0.3	0.3	0.9	1.2	0	ABI	DOM	GRN	GRS
ACC	61%	52%	68%	78%	71%	71%	71%	69%	64%	62%	40%	64%	64%	65%	65%	62%	61%	49%	\$114	\$120	\$107	\$118
PERC	19	80	28	31	20	22	53	88	38	81	78	33	28	54	29	31	77	28	59	21	73	42
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NP37 x	NBNL2	28													
EBV	6.1	1.0	-6.5	4.9	59	105	130	103	18	2.5	-5.2	76	6.6	-1.2	-0.3	0.8	1.9	0.13	\$140	\$131	\$147	\$136
ACC	58%	48%	66%	75%	69%	69%	69%	66%	60%	62%	38%	62%	61%	64%	62%	60%	60%	48%	35%	33%	37%	36%

Purchased by:

.....

Ś

Lot 23 BEN NEVIS JEAN H103^{sv}

HBR 5/8/12 AMFU,CAFU,DDFU,NH2%

VERMILION DATELINE 7078* J & C APPEAL A10°^v J & C MISS CHEYENNE W3* **RAFF EMPIRE E269^{sv}** S A F 598 BANDO 5175* RAFF DORIS A55* RAFF DORIS Y70* C A FUTURE DIRECTION 5321# BEN NEVIS XEROX X101^{#V} BEN NEVIS GERANIUM Q55+95^{SV} **BEN NEVIS JEAN B16#** BEN NEVIS QUASIM+95# BEN NEVIS JEAN U32# BEN NEVIS JEAN Q62+95#

ID NBNH103

H103 is simply a massive powerhouse of a cow that runs on the smell of an oily rag and gives us a cracker of a calf no matter who we join her to as well as flushing consistently well. She has been our most prolific cow and her progeny consistently rise to the very top. Her daughters in this sale in the previous Lot and Lot 73 – L231 show much promise and she has a long list of high priced and stud sons including BN Larrikin L191 who sold for \$11,000 in 2016, BN Massive M198 for \$13,000 in 2017 to Warrabah Station, BN Nimrod N22 \$10,000 in 2018 to Warrabah Station, BN Nixon N114 to Charlie Williams for \$14,000, BN Nuttela N123 to Robert Skipworth for \$18,000, BN Pinnacle P9 for \$11,000 to the Roots family.

TACE	Septe	mber 2	020 Tra	insTasr	nan Ang	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, 8	Scan (E	MA, Rib	, Rump	, IMF)
television have	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-14.4	-13	-0.9	8.4	60	110	141	118	18	1.8	-1.1	83	4.7	-1.3	0.4	1.0	0.4	-0.72	ABI	DOM	GRN	GRS
ACC	67%	58%	84%	88%	80%	80%	83%	78%	68%	65%	43%	68%	70%	73%	73%	68%	66%	51%	\$89	\$93	\$78	\$97
PERC	99	99	94	99	4	2	5	16	35	53	96	4	67	83	26	27	97	1	91	91	93	87
	Expe	cted Av	erage l	Progen	y Value	s – NBI	M128	x NBNH	1103													
EBV	-4.7	-4.8	-3.4	5.7	52	95	124	108	16	2.1	-2.8	72	4.3	-0.6	0.6	-0.3	1.6	-0.1	\$99	\$97	\$98	\$102
ACC	66%	57%	76%	87%	80%	81%	82%	77%	67%	69%	46%	70%	71%	74%	73%	69%	68%	56%	42%	39%	43%	43%

MATING TYPE AI

Purchased by:

\$

Son Ben Nevis Nixon N114

Son Ben Nevis Nero N37

Son Ben Nevis Legendary L221

Lot 24 BEN NEVIS KIWI K57*

HBR	6/8/	14	AMF	J,CA3%	,DDFU,I	VH10%	ID	NBNK	57	MAT	ING TY	PE AI										
BRAVE	IGHLAN STER E HEART STER TERN 3	IANIA U NDER O N 2664# OF STI N 947# 886# N 1486	F STERI			BEN NE	N NEVI BEN N VIS KIV BEN N N NEVI	JTURE E S XERO IEVIS GE MI E41# NEVIS V/ S KIWI X NEVIS KI	X X101 ^P RANIUM AQUERC K147#) Q55+9! V30#	-sv	the Rou	ndup for If doabili	her bea ty, a gre	utiful na	ature and	d stylish	looks. S		ig capaci	ity cow	
				1	1	gus Ca		1				1		1			,	1 .	Scan (El		<u></u>	. ,
Cally Furnation	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-0.9	-1.7	-3.7	5.2	44	84	115	95	19	2.1	-1.1	59	6.4	1.1	1.5	0.2	1.0	0.44	ABI	DOM	GRN	GRS
ACC	60%	54%	61%	77%	72%	72%	76%	70%	65%	59%	47%	65%	63%	68%	67%	63%	62%	52%	\$98	\$96	\$89	\$104
PERC	71	84	62	72	74	57	43	55	28	38	96	72	36	15	8	64	84	83	84	87	88	76
	Expe	cted Av	verage	Progen	y Value	s – USA	18636	043 x N	BNK57													
EBV	-0.1	-1.2	-5.4	4.4	54	98	125	98	18	1.7	-2.4	67	8.1	1.0	1.4	-0.1	2.5	0.67	\$126	\$117	\$131	\$124
ACC	66%	56%	79%	87%	83%	80%	80%	76%	71%	67%	46%	73%	69%	72%	70%	68%	67%	55%	41%	40%	42%	42%

Purchased by:

\$

Lot 25 BEN NEVIS KIWI K77*

HBR	7/8/14 AMFU,CA8%,DDFU,NHFU ID NBNK77							MAT	ING TY	PE Nati	ıral											
		IANIA U						Y IN FO												ump into nd Kayle		
Т	E MANI	A INFIN	ITY 04	379 AB*		BE	N NEVI	S ERITR	EA E6 ^{sv}			for \$11,0		numen	.at 1400	was a Ci			boyu a	nu kayte	ennick	
	TE MANIA 95102# BEN NEVIS DORMIST C IEVIS GAMEMAKER G56 ^{PV} BEN NEVIS KIWI G75#						46#		101 311,0	000.												
BEN N	IEVIS G	AMEMA	KER G	56 ^{PV}	BEN NEVIS DORMIST C44 BEN NEVIS KIWI G75#																	
	BAN	QUET Z	IEMAKER G56 ^{PV} BEN NEVIS KIWI G75#						36 ^{PV}													
В	EN NEV	IS GER/	ANIUM	E127 ^{sv}		BEN NEVIS ERITREA E6 ^{sv} BEN NEVIS DORMIST C46 BEN NEVIS KIWI G75 # BEN NEVIS ZEXAR Z86 ^r BEN NEVIS FERGIE B120 [#]																
	BEN	NEVIS (GERANI	UM T10	1#		BEN N	IEVIS FE	RGIE W	017#												
	Septe	mber 2	2020 Tra	ansTası	nan An	gus Ca	ttle Eva	luation	1		-		-	Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
transformation Calls Francisco	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	5.9	3.2	-4.1	2.9	38	71	91	79	9	2.2	-3.8	48	4.3	-0.8	-0.3	0.8	0.8	0.37	ABI	DOM	GRN	GRS
100	550/-	110/-	400%	700/-	700/-	700/-	7/0/-	670/-	55 0/-	5 /0/-	270/-	600/	50 %	650/-	640/-	E00/-	57 0/-	120/-	¢05	¢101	¢00	\$00

franksina kepat Calis Katushin	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	5.9	3.2	-4.1	2.9	38	71	91	79	9	2.2	-3.8	48	4.3	-0.8	-0.3	0.8	0.8	0.37	ABI	DOM	GRN	GRS
ACC	55%	44%	49%	78%	70%	70%	74%	67%	55%	54%	37%	60%	59%	65%	64%	59%	57%	43%	\$95	\$101	\$88	\$99
PERC	25	46	55	19	93	92	92	84	96	34	68	95	74	70	46	35	90	76	87	79	89	84
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NP242 >	NBNK	77													
EBV	5.2	4.5	-5.4	3.3	46	86	111	92	18	3.5	-5.8	63	7.2	-1.3	-0.8	1.4	1.8	0.47	\$130	\$122	\$138	\$126
ACC	56%	47%	57%	76%	69%	70%	71%	66%	57%	58%	40%	61%	60%	65%	63%	61%	59%	48%	35%	33%	37%	36%

MATING TYPE Natural

Purchased by:

\$

Lot 26 **BEN NEVIS JEAN K87**[#]

HBR	13/8/14	AM2%,CAFU,DD	03%,NH2%	ID NBNK87
	J & C APPE	AL A10 ^{PV}		TE MANIA UNLIN
J	& C EVIDENCI	E E11 ^{sv}	TE M	IANIA INFINITY (
	J & C DAISY'	S 5175 A2 ^{PV}		TE MANIA 95102#
BEN N	NEVIS HOOLIC	GAN H116sv	BEN NEV	IS JEAN G22sv
	BANQUET	BUNDY B002sv		BANQUET ZEALF
В	EN NEVIS GER	ANIUM E78#	BEN	NEVIS JEAN E45

LIMITED U3271# Y 04 379 AB# 2# ALFUL Z021PV BEN NEVIS JEAN E45# BEN NEVIS JEAN X91#

The natural daughter of our big mumma donor G22 who sells as Lot 112. Her first calf Mainstay M231 sold for \$11,000 in 2017 to The Grace Family at Eulo and we have three treasured daughters retained in the herd. The G22 progeny have really excelled as young cows, they are unique and really give us an edge. K87 is a maternal sister to young donors M191, M192, M201 and maternal brother to \$13,000 Ben Nevis No Fear N34 who sold to Arete Farms in 2018.

TACE	Septe	mber 2	020 Tra	nsTasr	nan An	gus Ca	ttle Eva	luation	I					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Calculation Ages	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	+S
EBV	-6.3	-5.2	-1.9	5.5	46	86	106	93	16	2.5	-2.8	65	4.1	-0.2	1.1	-0.3	1.6	0.36	ABI	DOM	GRN	GRS
ACC	54%	43%	55%	76%	68%	68%	72%	66%	49%	53%	37%	58%	57%	63%	62%	57%	55%	44%	\$87	\$92	\$82	\$90
PERC	92	95	87	78	63	48	68	59	57	22	83	46	77	50	13	82	61	75	93	92	92	93
	Expe	cted Av	verage	Progen	y Value	s – USA	179607	722 x N	BNK87													
EBV	1.0	-0.7	-2.9	4.4	60	106	132	113	18	2.5	-4.7	72	5.1	-0.8	-0.3	0.4	2.1	0.34	\$129	\$122	\$136	\$125
ACC	67%	52%	77%	87%	83%	82%	84%	76%	64%	74%	46%	71%	72%	75%	72%	69%	70%	56%	41%	40%	43%	43%

Purchased by:

\$

BEN NEVIS UTAH U101#

BEN NEVIS KIWI K100[#] Lot 27

HBR 20/8/14 AMFU,CA1%,DD10%,NHFU ID NBNK100 MATING TYPE Natural

TE MANIA UNLIMITED U3271# TE MANIA INFINITY 04 379 AB* TE MANIA 95102# BEN NEVIS GAMEMAKER G56PV BANQUET ZEALFUL Z021PV BEN NEVIS GERANIUM E127^{sv} **BEN NEVIS GERANIUM T101#**

BEN NEVIS ERITREA E6sv BEN NEVIS DORMIST C46# **BEN NEVIS KIWI G128**#

MYTTY IN FOCUS#

FORRES NEW DESIGN U95# BEN NEVIS KIWI Y9#

BEN NEVIS KIWI R98+96#

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, 8	Scan (E	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	0.5	-1.0	-1.1	4.9	37	66	84	82	6	1.7	-2.3	45	5.0	-2.1	-1.6	1.3	1.3	0.35	ABI	DOM	GRN	GRS
ACC	54%	43%	48%	77%	69%	68%	74%	67%	55%	48%	37%	59%	57%	65%	63%	58%	57%	42%	\$84	\$93	\$81	\$86
PERC	63	80	93	65	94	96	97	79	99	58	89	97	62	95	81	17	74	74	94	91	92	95
	Expe	cted Av	verage l	Progen	y Value	s – NBI	NP242 >	NBNK	100													
EBV	2.5	2.4	-3.9	4.3	46	84	108	93	16	3.3	-5.0	62	7.5	-1.9	-1.5	1.7	2.0	0.46	\$125	\$118	\$135	\$119
ACC	55%	46%	56%	75%	69%	69%	71%	66%	57%	55%	40%	61%	59%	65%	63%	60%	59%	47%	35%	33%	36%	36%

Purchased by:

\$

A long bodied cow who we have retained two daughters from. Her joining is largely

Ben Nevis blood and she will have one of the first Podium calves.

HBR	9/9/	14	AMFU	J,CAFU,	DDFU,N	H2%	ID	NBNK	135	MAT	ING TY	PE Natu	ural									
	J & C	APPEA	L A10 ^{PV}				TE MA		ILIMITE	D U327 [.]	1#	K135 is a	an absol	utely pro	olific pro	ducer of	daught	ers and s	he has h	nad four	in a row	, all
R	AFF EM	PIRE E2	6 9 sv			TE	MANIA	INFINI	TY 04 3	79 AB#		retained	l by us. S	he is sup	per neat	and stru	cturally	correct.				
	RAFF	DORIS A	\55#				TE MA	NIA 951	02#													
BEN N	IEVIS H	ELIUM I	HIGH H	123 ^{sv}		BEN NE	VIS JEA	N F8#														
	CRU	SADER	OF STER	N AB#			BEN N	IEVIS A	BEL A12	sv												
В	EN NEV	IS DOR	MIST B	37#		BE	N NEVI	S DALTO	ON D13	#												
	BEN	NEVIS [DORMIS	ST Z1#			BEN N	IEVIS JE	AN Z16	3#												
ACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1	-	-	-	-	Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF
\sim	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-11.7	-14.7	-0.3	7.6	45	79	101	97	11	1.7	-2.9	55	2.5	-1.2	-0.2	0.3	1.4	-0.09	ABI	DOM	GRN	GR
ACC	54%	45%	61%	77%	69%	68%	73%	67%	62%	47%	37%	59%	56%	64%	61%	57%	56%	41%	\$68	\$75	\$63	\$7
PERC	99	99	96	98	64	76	78	51	91	58	82	82	94	81	43	59	70	19	99	99	97	99
	Expe	cted Av	verage	Progen	y Value	s – NBI	NN239		(135													
	-6.5	-4.7	-3.0	6.5	52	91	120	113	15	1.2	-2.8	68	3.5	-1.1	-1.3	0.3	2.0	0.03	\$97	\$94	\$102	\$9
EBV	-0.5		0.0	0.0	02	•.																

Purchased by:

\$

BEN NEVIS YOLANDE K122[#] Lot 29

HBR	2/9/14	AMFU,CA20%,DDFU,NHFU	J ID NBNK122	MATING TYPE Natural
	J & C APPEAI	L A10 ^{pv}	BR MIDLAND#	A lovely head
RA	AFF EMPIRE E26	5 9 sv	RAFF MIDLAND Z204 ^{PV}	should be a r
	RAFF DORIS A	\55*	RAFF DORIS W10#	

A lovely head and jaw reflected in a generous rib and deep rib. This joining to Inertia should be a really good one.

BEN NEVIS HELIUM HIGH H123sv CRUSADER OF STERN AB# BEN NEVIS DORMIST B37# **BEN NEVIS DORMIST Z1**#

BEN NEVIS YOLANDE F75# BEN NEVIS TEMPLAR T47# BEN NEVIS YOLANDE X030 X30* BEN NEVIS YOLANDE R12+96#

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation						Т	raits ob:	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
frantisma kepa Gala-batadan	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	1.7	-3.4	-2.5	4.3	41	72	89	72	11	1.4	-4.2	52	1.2	3.6	4.6	-1.7	0.7	0.28	ABI	DOM	GRN	GRS
ACC	53%	42%	57%	76%	70%	69%	74%	68%	64%	47%	34%	59%	58%	64%	62%	58%	57%	38%	\$76	\$85	\$55	\$86
PERC	55	91	80	50	86	91	94	92	89	73	61	90	99	1	1	99	92	65	97	97	98	95
	Expe	cted Av	verage I	Progen	y Value	s – USA	186360	043 x N	BNK12	2												
EBV	1.2	-2.1	-4.8	4.0	53	91	112	86	15	1.4	-3.9	63	5.5	2.2	2.9	-1.0	2.4	0.59	\$115	\$111	\$114	\$115
ACC	63%	50%	77%	86%	82%	79%	79%	75%	70%	61%	40%	70%	67%	70%	67%	65%	65%	48%	38%	37%	39%	40%

Lot 30 BEN NEVIS KIWI K117*

HBR 30/8/14 AMFU,CA14%,DD1%,NHFU

S A F FOCUS OF E R[#] MYTTY IN FOCUS[#] MYTTY COUNTESS 906[#] BEN NEVIS ERITREA E6^{5V} BULLIAC X-RAY X10[#] BEN NEVIS DORMIST C46[#] BEN NEVIS DORMIST A61[#] BR MIDLAND" RAFF MIDLAND Z204" RAFF DORIS W10" BEN NEVIS KIWI F174" CRUSADER OF STERN AB" BEN NEVIS KIWI B52" BEN NEVIS YELP Y14"

ID NBNK117

A really lovely looking cow with good type and skin. She has a strong top and is very feminine. Eritrea was a real cow maker. Kiwi K117's first calf made \$10,000. She is a maternal sister to Lot 46 – H44. Her joining to Beast Mode puts you right in the pocket.

TACE September 2020 TransTasman Angus Cattle Evaluation Traits observed: BWT, 600WT, Scan (EMA, Rib, Rump, IMF) CEDir CEDtr GL BW 200 400 600 MCW DTC CWT EMA RIB P8 **RBY** IMF NFI-F Milk SS Selection Indexes 92 0.08 GRS FBV 11.5 6.8 -5.8 2.0 41 68 75 13 1.9 -2.1 53 1.7 -0.9 -0.9 0.5 1.2 ABI DOM GRN 56% 46% 53% 78% 71% 71% 75% 69% 64% 53% 40% 62% 61% 67% 65% 61% 60% 46% \$88 \$95 \$80 \$94 ACC 91 88 79 77 PERC 2 15 26 8 86 95 48 90 87 97 73 64 49 38 92 89 93 90 Expected Average Progeny Values – USA17960722 x NBNK117 \$127 EBV 9.9 5.3 -4.9 2.7 57 97 125 104 16 2.2 -4.4 66 3.9 -1.1 -1.3 0.8 1.9 0.2 \$130 \$124 \$135 ACC 68% 53% 76% 88% 84% 84% 85% 77% 71% 74% 47% 73% 74% 77% 74% 71% 72% 57% 43% 41% 45% 45%

AI

MATING TYPE Natural

Purchased by:

\$

Lot 31 BEN NEVIS KIWI J11*

HBR	13/8/13	AMFU,CA1%,DD3	%,NHFU	ID NBNJ11	MATING	YPE
	PAPA EQUA	ATOR 2928#		HINGAIA 469#		Kiv
В	T EQUATOR 3	95M#	CRU	JSADER OF STERN A	∖B#	bre
	RM BLACK N	1AGIC 7574 E A R#		STERN 6129#		is t cov
MILLA	H MURRAH E	QUATOR D78 ^{₽V}	BEN NEV	VIS KIWI B52#		righ
	YTHANBRA	AE HENRY VIII U8sv		OAK HILL NEW DE	SIGN W005#	0
М	11LLAH MURR	AH RADO Y119#	BEN	N NEVIS YELP Y14#		
	MILLAH MU	JRRAH RADO V31#		BEN NEVIS KIWI V	37#	

Kiwi J11 is a front paddock cow with lovely type and temperament. She is beautifully bred and her dam has been one of our favourites. We have two retained daughters. She is the maternal sister to Donor cow Lot 114 – NBNG49, and Jack Halliday's Foundation cow (Hippo) H134. Her joining to Inertia will complement her beautifully and have you right in the box seat

Septe	mber 2	020 Tra	InsTasn	nan Ang	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
4.0	7.3	-4.4	3.4	44	84	110	109	18	1.4	-4.8	61	1.8	0.6	0.6	-0.2	0.5	-0.63	ABI	DOM	GRN	GRS
															\$100	\$90	\$103				
38	12	49	28	75	57	56	28	39	73	49	62	97	26	22	79	95	1	83	81	87	78
Exped	cted Av	erage I	Progen	y Value	s – USA	186360	043 x N	BNJ11													
2.4	3.3	-5.7	3.5	54	97	123	105	18	1.4	-4.2	68	5.8	0.7	0.9	-0.3	2.3	0.13	\$126	\$119	\$131	\$124
67%	55%	80%	88%	84%	81%	80%	76%	70%	68%	46%	73%	69%	73%	70%	68%	68%	57%	41 %	41 %	42%	43%
	CEDir 4.0 62% 38 Expec 2.4	CEDir CEDtr 4.0 7.3 62% 53% 38 12 Expected Av 3.3	CEDir CEDtr GL 4.0 7.3 -4.4 62% 53% 63% 38 12 49 Expected Average I 2.4 3.3 -5.7	CEDir CEDir GL BW 4.0 7.3 -4.4 3.4 62% 53% 63% 79% 38 12 49 28 Expected Average Progen 2.4 3.3 -5.7 3.5	CEDir CEDtr GL BW 200 4.0 7.3 -4.4 3.4 44 62% 53% 63% 79% 73% 38 12 49 28 75 Expected Xverage Progeny Value 2.4 3.3 -5.7 3.5 54	CEDir CEDtr GL BW 200 400 4.0 7.3 -4.4 3.4 44 84 62% 53% 63% 79% 73% 74% 38 12 49 28 75 57 Expected Average Progeny Values – USA 2.4 3.3 -5.7 3.5 54 97	CEDir CEDtr GL BW 200 400 600 4.0 7.3 -4.4 3.4 44 84 110 62% 53% 63% 79% 73% 74% 76% 38 12 49 28 75 57 56 Expected Average Progeny Values – USA186360 2.4 3.3 -5.7 3.5 54 97 123	CEDir CEDtr GL BW 200 400 600 MCW 4.0 7.3 -4.4 3.4 44 84 110 109 62% 53% 63% 79% 73% 74% 76% 71% 38 12 49 28 75 57 56 28 Expected Average Progeny Values – USA18636043 x N 2.4 3.3 -5.7 3.5 54 97 123 105	4.0 7.3 -4.4 3.4 44 84 110 109 18 62% 53% 63% 79% 73% 74% 76% 71% 64% 38 12 49 28 75 57 56 28 39 Expected X-rage Progeny Values - USA186360433 x NBNJ11 2.4 3.3 -5.7 3.5 54 97 123 105 18	CEDir CEDtr GL BW 200 400 600 MCW Milk SS 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 38 12 49 28 75 57 56 28 39 73 Expected Average Progeny Values - USA18636043 x NBNJ11 2.4 3.3 -5.7 3.5 54 97 123 105 18 1.4	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 -4.8 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 38 12 49 28 75 57 56 28 39 73 49 Expected Average Progeny Values – USA18636043 x NBNJ11 2.4 3.3 -5.7 3.5 54 97 123 105 18 1.4 -4.2	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 -4.8 61 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 38 12 49 28 75 57 56 28 39 73 49 62 Expected Average Progeny Values - USA18636043 x NBNJ11 2.4 3.3 -5.7 3.5 54 97 123 105 18 1.4 -4.2 68	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 -4.8 61 1.8 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 63% 38 12 49 28 75 57 56 28 39 73 49 62 97 Expected Average Progeny Values - USA18636043 x NBNJ11 2.4 3.3 -5.7 3.5 54 97 123 105 18 1.4 -4.2 68 5.8	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 -4.8 61 1.8 0.6 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 63% 69% 38 12 49 28 75 57 56 28 39 73 49 62 97 26 Expected Average Progeny Values - USA18636043 x NBNJ11 2.4 3.3 -5.7 3.5 54 97 123 105 18 1.4 -4.2 68 5.8 0.7	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 -4.8 61 1.8 0.6 0.6 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 63% 69% 67% 38 12 49 28 75 57 56 28 39 73 49 62 97 26 22 Expected Average Progeny Values – USA18636043 x NBNJ11 L 4.4 4.4 6.4 9.7 123 105 18 1.4 -4.2 68 5.8 0.7 0.9	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 -4.8 61 1.8 0.6 0.6 -0.2 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 63% 69% 67% 64% 38 12 49 28 75 57 56 28 39 73 49 62 97 26 22 79 Expected Average Progeny Values - USA18636U43 x NBNJ11 L -4.2 68 5.8 0.7 0.9 -0.3	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF 4.0 7.3 -4.4 3.4 444 84 110 109 18 1.4 -4.8 61 1.8 0.6 0.6 -0.2 0.5 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 63% 69% 67% 64% 63% 38 12 49 28 75 57 56 28 39 73 49 62 97 26 22 79 95 Expected Average Progeny Values - USA186360433 x NBNJ11 2.4 3.3 -5.7 3.5 54 97 123 105 18 1.4 -4.2 68 5.8 0.7 0.9 -0.3 2.3	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 -4.8 61 1.8 0.6 0.6 -0.2 0.5 -0.63 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 63% 69% 67% 64% 63% 55% 38 12 49 28 75 57 56 28 39 73 49 62 97 26 22 79 95 1 Expected Average Progeny Values - USAH86043 x NBNJ11 1.4 -4.2 68 5.8 0.7 0.9 -0.3 2.3 0.13	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F SS 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 -4.8 61 1.8 0.6 0.6 -0.2 0.5 -0.63 ABI 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 63% 69% 67% 64% 63% 55% \$99 38 12 49 28 75 57 56 28 39 73 49 62 97 26 22 79 95 1 83 Expected Average Progeny Values - USAI8636U43 x NBNJ1 1.4 -4.2 68 5.8 0.7 0.9 -0.3 2.3 0.13 \$126	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F S∈lection 4.0 7.3 -4.4 3.4 44 84 110 109 18 1.4 -4.8 61 1.8 0.6 0.6 -0.2 0.5 -0.63 ABI DOM 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 63% 69% 67% 64% 63% 55% \$99 \$100 38 12 49 28 75 57 56 28 39 73 49 62 97 26 22 79 95 1 83 81 Expected Average Progeny Values – USA18636U43 x NBNJ11 4.4 4.2 68 5.8 0.7 0.9 -0.3 2.3 0.13 \$126 \$119	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F Selection Indexe 4.0 7.3 -4.4 3.4 444 84 110 109 18 1.4 -4.8 61 1.8 0.6 0.6 -0.2 0.5 -0.63 ABI DOM GRN 62% 53% 63% 79% 73% 74% 76% 71% 64% 61% 47% 66% 63% 69% 67% 64% 63% 55% \$99 \$100 \$90 38 12 49 28 75 57 56 28 39 73 49 62 97 26 22 79 95 1 83 81 87 Expected Average Progeny Values - USA1863643 x NBNJ11 -4.4.2 68 5.8 0.7 0.9 -0.3 2.3 0.13 \$126 \$119 \$131

Purchased by:

.....

LOT 30. BEN NEVIS KIWI K17

LOT 35. BEN NEVIS JUNE J70 (see page 32)

Lot 32 BEN NEVIS UMBRA J19*

HBR 23/8/13 AM

AMFU,CA33%,DDFU,NHFU ID NBNJ19

MATING TYPE Natural

Umbra J19 is a prototype for the productiveness of the Eritrea cows. They are all very slick and feminine with exceptional milking ability and they have worked so well for us. J19 in particular has been a terrific cow for us with her first calf M33 selling for \$15,000 to Boyd and Kay Mckinnon, and we are very grateful to have three beautiful retained daughters.

JATTOCOJOTEK
MYTTY IN FOCUS [#]
MYTTY COUNTESS 906*
BEN NEVIS ERITREA E6 ^{sv}
BULLIAC X-RAY X10 [#]
BEN NEVIS DORMIST C46#
BEN NEVIS DORMIST A61#

EXAR EXPAND 1241" BEN NEVIS ZEXAR Z86" BEN NEVIS JEAN X114" BEN NEVIS UMBRA D96" BEN NEVIS TAN T41" BEN NEVIS UMBRA V27" BEN NEVIS UMBRA T120"

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
alera har	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	10	3.9	-5.6	2.9	41	73	92	81	12	0.7	-2.3	52	5.1	-2.4	-2.7	2.0	0.7	-0.14	ABI	DOM	GRN	GRS
ACC	56%	44%	52%	78%	70%	71%	74%	69%	59%	55%	38%	61%	59%	66%	64%	60%	58%	42%	\$93	\$104	\$87	\$98
PERC	5	39	29	19	84	88	91	82	87	93	89	90	60	97	95	5	92	15	89	72	89	86
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NP242 >	(NBNJ	19													
EBV	7.3	4.9	-6.1	3.3	48	88	112	92	19	2.8	-5.0	65	7.6	-2.1	-2.0	2.0	1.7	0.22	\$129	\$124	\$138	\$125
ACC	56%	47%	58%	76%	69%	70%	71%	67%	59%	59%	40%	62%	60%	66%	63%	61%	59%	47%	36%	33%	37%	37%

Purchased by:

Ś

Lot 33 BEN NEVIS GERANIUM J48#

APR 20/8/13 AM3%,CA3%,DD7%,NH8% ID NBNJ48

MATING TYPE Natural

 VERMILION DATELINE 7078#
 -

 J & C APPEAL A10^{PV}
 UNKNOWN

 J & C MISS CHEYENNE W3#

 J & C EVIDENCE E11^{SV}
 BEN NEVIS GERA

 S A F 598 BANDO 5175#
 BEN NEVIS GEN NEVIS GEN

 J & C DAISY'S 5175 A2^{PV}
 BEN NEVIS C

 LANCAMAREE DAISY T3#
 BEN NEVIS C

BEN NEVIS GERANIUM F18# BEN NEVIS XEROX B6^{5V} BEN NEVIS GERANIUM D21# BEN NEVIS GERANIUM Z46# Geranium J48's first calf L59 sold for \$9,000 in 2016 to Robert Thomson. She is a bigger framed cow whose joining to Beast Mode should work a treat adding extra thickness, punch and constitution.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
alara har	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	+S
EBV	-5.7	-2.9	-3.8	6.5	46	81	96	92	10	2.1	-1.8	68	4.1	-2.1	-0.6	1.4	1.7	0.41	ABI	DOM	GRN	GRS
ACC	47%	38%	54%	67%	67%	70%	72%	65%	53%	55%	35%	60%	58%	65%	63%	58%	57%	47%	\$87	\$99	\$87	\$89
PERC	91	89	60	92	63	67	86	61	95	38	92	34	77	95	55	14	56	80	93	83	89	94
	Expe	cted Av	erage l	Progen	y Value	s – USA	179607	722 x N	BNJ48													
EBV	1.3	0.5	-3.9	4.9	60	104	127	112	15	2.3	-4.2	73	5.1	-1.7	-1.1	1.3	2.1	0.37	\$129	\$126	\$139	\$125
ACC	63%	49%	76%	83%	82%	83%	84%	75%	66%	75%	45%	72%	72%	76%	73%	69%	71%	57%	41%	39%	43%	43%

Purchased by:

Lot 34 BEN NEVIS DORMIST J67*

HBR 27/8/13 AMFU,CAFU,DD13%,NHFU

MATING TYPE AI

PAPA EQUATOR 2928* BT EQUATOR 395M* RM BLACK MAGIC 7574 E A R* MILLAH MURRAH EQUATOR D78*V YTHANBRAE HENRY VIII U85V MILLAH MURRAH RADO Y119* MILLAH MURRAH RADO V31*

BR MIDLAND# DUNOON MIDLAND A017^{PV} DUNOON DANDLOO W035^{PV} BEN NEVIS DORMIST E116# EXAR EXPAND 1241# BEN NEVIS DORMIST Z130# BEN NEVIS DORMIST W004#

ID NBNJ67

Dormist J67 has been an excellent cow for us with the right balance of performance and softness. Her first bull was used by us in-herd for progeny testing with his steer calves performing exceptionally in the feedlot for our steer partners Glen Collin Pastoral Co leading them back to purchase a stud bull P199 last year. Her second calf sold for \$10,000 to Warrabah Station – the astute owners of Judo. We have one retained daughter.

\$

IACE	Septe	mber 2	2020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Calo Sur Anno	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-0.8	4.0	-5.0	5.3	54	98	134	137	17	2.5	-6.1	76	3.4	0.8	1.0	-0.1	1.1	-0.36	ABI	DOM	GRN	GRS
ACC	63%	54%	64%	79%	73%	75%	76%	72%	64%	67%	48%	66%	65%	69%	68%	64%	63%	56%	\$122	\$108	\$125	\$121
PERC	71	38	39	74	17	13	9	4	46	22	25	12	86	21	14	76	81	4	43	60	50	34
	Expe	cted Av	erage	Progen	y Value	s – NBI	VM51 x	NBNJ	67													
EBV	-0.9	4.4	-1.3	5.4	61	112	148	138	20	2.5	-6.2	86	4.0	-0.7	-0.6	0.1	1.7	-0.22	\$139	\$121	\$150	\$134
ACC	70%	58%	79%	88%	83%	82%	82%	76%	66%	77%	51%	72%	70%	73%	72%	69%	68%	59%	44%	43%	44%	45%

Purchased by:

Lot 35 BEN NEVIS JUNE J70*

HBR	11/8,	/13	AMFU	J,CAFU,	DDFU,N	IH50%	ID	NBNJ7	0	MAT	ING TY	PE Nati	ural									
٣	1YTTY II	FOCUS N FOCU TY COUN	IS#			BE	N NEVI	S XERO	X X101 [®]	ON 532 , 1 Q55+9!			us. She	has a str	ong spir	e and th	ie soft, s	ilky skin	Eritrea's we have			been :owards.
BEN N	IEVIS EI	RITREA	E6 ^{sv}			BEN NE	EVIS JUI	NE E63#	¥													
	BULI	LIAC X-F	RAY X10	#			BEN N	IEVIS TA	AN T41#													
В	EN NEV	IS DOR	MIST C	46#		BE	N NEVI	S JUNE	V22#													
	BEN	BEN NEVIS DORMIST A61* BEN NEVIS JUNE T59*																				
TACE	Septe	BEN NEVIS DORMIST A61* BEN NEVIS JUNE T59* September 2020 TransTasman Angus Cattle Evaluation Traits observed: BWT, 600WT, Scan (EMA, Rib, Rump, IMF)																				
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	8.8	3.7	-3.8	2.2	42	70	92	79	19	1.3	-1.8	54	4.9	0.4	0	0.7	0.7	0.02	ABI	DOM	GRN	GRS
ACC	56%	45%	51%	79%	72%	72%	75%	69%	64%	49%	38%	61%	58%	65%	63%	59%	58%	42%	\$84	\$94	\$69	\$93
PERC	9	41	60	10	83	93	91	84	31	77	92	87	63	31	37	40	92	31	94	90	96	91
	Expe	cted Av	verage	Progen	y Value	s – NBI	NP37 x	NBNJ7	0			,										
EBV	7.1	3.4	-5.6	4.2	53	93	121	105	19	2.5	-4.5	69	5.6	-0.9	-0.5	0.7	1.7	0.14	\$125	\$118	\$128	\$123
ACC	55%	45%	58%	76%	69%	70%	71%	66%	60%	55%	37%	60%	58%	64%	61%	59%	58%	44%	35%	32%	36%	36%

Purchased by:

\$

Lot 36 BEN NEVIS LAURA J87*

HBR	28/8/13	AMFL	J,CA3%	,DD6%,	NHFU	IC	NBNJ8	7	MAT	ING TY	PE Natu	ıral
	S A F FOCL		ŧ		5		NET WO		200#		Laura J8 \$10,000	in our 2
	MYTTY COL	JNTESS 90)6#			SAVE	MBLYNE	TTE 546	53#		for \$11,0 Angus fo	
BEN N	BULLIAC X-		¥		BEN NI		URA G9 ES NEW	-	NI I 192#			
В	EN NEVIS DO				BE		S LAUR		11055			
	BEN NEVIS	DORMIS	ST A61#			BEN N	NEVIS LA	URA U	75#			
TACE	September	2020 Tra	InsTasr	nan An	gus Ca	ttle Eva	aluation	1				
1.00		0	D\A/	200	400	600	MOW	Maile	66	DTC	CWIT	EN4 0

Laura J87 is the daughter of our Donor Dam Laura G95, her first son M34 sold for \$10,000 in our 2017 sale. Her two maternal brothers include Kingsguard K99 who sold for \$11,000 in 2015 to Warrabah Station, and Landslide L113 who sold to Valorbrook Angus for \$18,000 in 2016.

	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
turchanan kepat Sala-baharian	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	8.4	-0.8	-3.9	4.2	46	80	107	97	16	2.2	-3.3	58	2.8	-1.5	-2.2	1.5	0.9	-0.02	ABI	DOM	GRN	GRS
ACC															\$103	\$98	\$102					
PERC	11	79	58	48	60	73	65	52	60	34	76	73	92	87	91	12	87	26	82	74	82	80
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NP242 >	NBNJ	87													
EBV	6.5	2.5	-5.3	3.9	51	91	119	100	21	3.5	-5.5	68	6.4	-1.6	-1.8	1.8	1.8	0.28	\$133	\$123	\$143	\$127
ACC	55%	46%	58%	75%	69%	70%	71%	66%	59%	59%	40%	61%	61%	65%	63%	61%	59%	48%	35%	33%	37%	36%

Purchased by:

Lot 38 BEN NEVIS GERANIUM J117*

11/7/13 AMFU,CAFU,DD2%,NH5% ID NBNJ117

MATING TYPE AI

B/R NEW DESIGN 036[#] TE MANIA UNLIMITED U3271[#] TE MANIA LOWAN R426+96[#] **TE MANIA INFINITY 04 379 AB[#]** TE MANIA PRINCE 153-93[#] TE MANIA 95102[#] TE MANIA 92F006 AB[#]

BEN NEVIS DEL PEDRO D3^{SV} BEN NEVIS FLORYX U87* BEN NEVIS GERANIUM G92* BEN NEVIS XEROX B6^{SV} BEN NEVIS GERANIUM D21* BEN NEVIS GERANIUM Z46*

BANQUET ZEALFUL Z021PV

J117 is a exceptionally well bred cow with beautiful type and a magic skin. Her first son Lucrative L64 sold for \$17,000 to Coolie Angus.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	I					īT	aits ob	served:	BWT, 6	00WT, 9	Scan (El	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	-1.7	-0.1	-4.7	4.4	43	79	98	84	13	3.8	-6.9	51	1.0	0.9	2.9	-2.0	2.4	0.33	ABI	DOM	GRN	GRS
ACC	63%	58%	61%	80%	75%	76%	78%	73%	67%	66%	54%	67%	66%	71%	70%	66%	65%	58%	\$100	\$95	\$102	\$97
PERC	76	74	44	53	76	75	84	77	81	2	14	91	99	19	2	99	29	71	82	89	78	87
	Expe	cted Av	verage I	Progen	y Value	s – USA	181304	171 x N	BNJ117	7												
EBV	3.0	3.0	-4.1	4.4	53	96	118	98	15	3.0	-4.6	68	4.0	0.9	1.4	-1.1	2.4	0.31	\$119	\$114	\$123	\$117
ACC	66%	53%	78%	86%	77%	77%	77%	74%	69%	68%	44%	70%	67%	70%	66%	65%	65%	53%	40%	37%	41 %	40%

Purchased by:

HBR

\$

Lot 39 BEN NEVIS CELESTE J121*

HBR 12/7/13 AMFU,CAFU,DD33%,NHFU ID NBNJ121

MATING TYPE Natural

B/R NEW DIMENSION 7127sv TE MANIA BARTEL B219Pv TE MANIA JEDDA W85# AYRVALE BARTEL E7Pv MYTTY IN FOCUS# EAGLEHAWK JEDDA B32sv EAGLEHAWK JEDDA Z48# TE MANIA UNLIMITED U3271# TE MANIA INFINITY 04 379 AB# TE MANIA 95102# BEN NEVIS CELESTE G77# DUNOON MIDLAND A017** BEN NEVIS CELESTE E25# BEN NEVIS CELESTE V068# J121 is a quiet achiever who has serious runs on the board but you might not pick her out of the mob. While moderate in frame she punches well above her weight boasting Stud Sire Podium P242 who features as a joining sire in this catalogue.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, \$	Scan (El	MA, Rib	MA, Rib, Rump, IMF)		
tarifama Arga Gila faladen	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	electior	ection Indexes							
EBV	9.0	9.2	-5.3	1.8	45	83	102	66	21	3.2	-7.8	62	7.7	-1.0	-0.3	0.9	2.8	0.59	ABI	DOM	GRN	GRS	
ACC	65%	60%	65%	80%	74%	75%	77%	73%	68%	67%	56%	68%	66%	71%	70%	68%	66%	61%	\$143	\$131	\$158	\$133	
PERC	8	4	34	6	69	63	75	95	14	7	6	59	17	76	46	31	18	93	9	4	13	10	
	Expe	Expected Average Progeny Values – NBNP37 x NBNJ121																					
EBV	7.2	6.1	-6.3	4.0	55	99	126	98	20	3.5	-7.5	73	7.0	-1.6	-0.6	0.8	2.7	0.43	\$154	\$137	\$173	\$143	
ACC	60%	52%	65%	76%	70%	71%	72%	68%	62%	64%	46%	64%	62%	67%	65%	63%	62%	54%	38%	35%	40%	39%	

Purchased by:

Lot 40 BEN NEVIS JUNE J122*

HBR	15/7/13 AMFU,CA1%,DDFU,NHFU ID NBNJ122											PE AI										
Т	C TOTA	L 410#	NEW DE		08 ^{sv}	BE	N NEVI	EW FRC S AROD EVIS KIV	A97sv	095#		0.1						old for \$ / exciting				
	TC ERICA EILEEN 2047# POSS TOTAL IMPACT 745# CONNEALY LEAD ON# POSS BLACKCAP 5116# POSS BLACKCAP 205#						BEN N N NEVI	NE G84 IEVIS V/ S JUNE I IEVIS JU	# AQUER(X039 X3	39#												
					nan An							-		1	1			00WT, 8	· · ·			, ,
EBV	CEDir -11.3	CEDtr	GL -2.5	BW 6.3	200 52	400 86	600 111	мсw 119	Milk 7	ss 1.9	DTC -4.4	сwт 64	EMA 2.4	RIB -1.4	P8	RBY 0.4	IMF 1.3	NFI-F	ABI	election DOM	GRN	s GRS
ACC	ACC 61% 51% 61% 79% 73% 73% 76% 71% 67% 589								58%	44%	65%	63%	69%	67%	63%	62%	49%	\$85	\$88	\$84	\$86	

ACC	01 /0	51/0	01 /0	1970	13/0	1370	10 /0	/1 /0	01 /0	50 /0	44 /0	05 /0	00 /0	09 /0	01 /0	00 /0	02 /0	43 /0	ψOJ	ψυυ	404	400
PERC	99	55	80	90	25	51	53	15	99	48	57	51	95	86	58	54	74	4	94	95	91	95
	Expe	Expected Average Progeny Values - USA17960722 x NBNJ122																				
EBV	-1.6	3.1	-3.2	4.8	63	106	135	126	13	2.2	-5.5	71	4.2	-1.4	-1.2	0.8	1.9	-0.02	\$128	\$120	\$137	\$123
ACC	70%	56%	80%	89%	85%	85%	86%	78%	73%	76%	49%	75%	75%	78%	75%	72%	73%	58%	44%	42%	45%	45%

Purchased by:

\$

Lot 41 BEN NEVIS GERANIUM J145*

HBR	29/7/13	AMFU,CA1%,DDFU,	NH12%	ID NBNJ145	MATING	TYPE AI
BT	FEQUATOR 3		BEI	C A FUTURE DIRECT N NEVIS XEROX X101		Geraniu dam A1 materna
	RM BLACK N	4AGIC 7574 E A R#		M Q55+95 ^{sv}	before h	

RM BLACK MAGIC 7574 E A R[#] **MILLAH MURRAH EQUATOR D78**^{PV} YTHANBRAE HENRY VIII U8^{SV} MILLAH MURRAH RADO V119[#] MILLAH MURRAH RADO V31[#] BEN NEVIS XEROX X101^{PV} BEN NEVIS GERANIUM Q55+95^{SV} BEN NEVIS AXIS A18# PINE CREEK NUDGE N36+93[#] BEN NEVIS GERANIUM Q43+95[#] BEN NEVIS GERANIUM L6+91[#] Geranium J145 is a beautiful, big frame and feminine descendent of the great E40. Her dam A18 was one of our favourite and has ten progeny recorded in the herd including her maternal sisters Lot 106 - H169, Lot 47 - L83. Son P180 was one of top 2019 sale bulls before he got penemonia and she has two retained daughters. J145's Inertia joining will be right in the pocket both phenotypcally and genetically.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	EMA, Rib, Rump, IMF)			
function of Armon	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es	
EBV	-2.8	-0.5	-3.7	7.4	56	99	138	147	13	2.2	-2.7	77	2.6	-1.5	-1.4	1.2	0	-0.7	ABI	DOM	GRN	GRS	
ACC	64%	54%	83%	81%	74%	75%	78%	73%	68%	60%	47%	66%	65%	70%	68%	65%	65%	55%	\$102	\$99	\$97	\$107	
PERC	81	77	62	97	11	12	6	2	81	34	85	10	93	87	77	20	99	1	79	83	82	71	
	Expe	Expected Average Progeny Values – USA18636043 x NBNJ145																					
EBV	-1.1	-0.6	-5.4	5.5	60	105	137	124	15	1.8	-3.2	76	6.2	-0.4	-0.1	0.5	2.0	0.1	\$128	\$118	\$135	\$126	
ACC	68%	56%	90%	89%	84%	82%	81%	77%	72%	68%	46%	73%	70%	73%	70%	69%	69%	57%	42%	41 %	43%	43%	

Purchased by:

Lot 42 BEN NEVIS DORMIST J160*

APR	7/8/13	AM2%,CA3%,DD2	2%,NH2%	ID NBNJ160	MATING	TYPE AI			
	B/R NEW	DIMENSION 7127sv		TE MANIA UNLIMIT	ED U3271#	Dormi			
TE	E MANIA BAR	RTEL B219 ^{PV}	TE M	IANIA INFINITY 04	379 AB#	constit			
	TE MANIA J	EDDA W85#		TE MANIA 95102#		bulls ir skin. H			
AYRVA	LE BARTEL E	7 ^{PV}	BEN NEV	IS DORMIST G16#		materr			
	MYTTY IN	FOCUS#							
EA	AGLEHAWK J	EDDA B32 ^{sv}	BEN	109#					
	EAGLEHA	WK JEDDA Z48#	BEN NEVIS DORMIST X041 X41#						

Dormist J160's genetic combination has been a cracking one combining old fashioned constitution with a double dash of carcase merit and she has produced many top priced bulls in our sale and treasured females. J160 is a big frame, stylish cow with a beautiful skin. Her M Calf Mamba sold for \$11,000 to Bruce and Kay McKinnon in 2017. Her maternal sister sells as Lot 64 – L33.

\$

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	September 2020 TransTasman Angus Cattle Evaluation Traits observed: BWT, 600WT, Scan (
Constantia Asso	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	election Indexes		
EBV	5.6	5.6	-3.0	3.2	40	70	90	71	13	2.7	-6.6	51	4.8	-1.6	-0.2	0.3	2.9	0.66	ABI	DOM	GRN	GRS	
ACC	64%	58%	68%	75%	72%	74%	76%	71%	63%	67%	54%	66%	65%	70%	69%	65%	64%	59%	\$121	\$113	\$135	\$113	
PERC	27	24	73	24	89	94	93	92	78	16	18	90	65	89	43	59	16	95	45	42	36	56	
	Expected Average Progeny Values – USA18130471 x NBNJ160																						
EBV	6.6	5.9	-3.2	3.8	51	92	114	92	15	2.5	-4.5	68	5.9	-0.4	-0.2	0.1	2.6	0.48	\$129	\$123	\$140	\$125	
ACC	66%	53%	81%	84%	75%	76%	76%	73%	67%	69%	44%	69%	67%	70%	65%	65%	65%	53%	40%	36%	41%	40%	

Purchased by:

.....
Lot 43 BEN NEVIS FLORYX H3*

HBR 12/3/12

AMFU,CA2%,DDFU,NHFU

MATING TYPE Natural

VERMILION DATELINE 7078* J & C APPEAL A10°^V J & C MISS CHEYENNE W3* J & C EVIDENCE E11^{SV} S A F 598 BANDO 5175* J & C DAISY'S 5175 A2^{PV} LANCAMAREE DAISY T3* SCOTCH CAP# VICTOREE SCOTCH CAP K46+90^{SV} VICTOREE QUIET F27.* BEN NEVIS FLORYX U87# BEN NEVIS GERONIMO# BEN NEVIS FLORYX J16+89# BEN NEVIS FLORYX F25.*

ID NBNH3

Floryx H3 is one of the easiest doing, most versatile and quietest cows in the herd. She is the maternal sister to our Donor E123 (mother of Lot 54 - G8) as well as our most successful show cow over the years F162. These cows never fail to produce a front pen bull calf. She will produce a thumper to Beast Mode.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	I					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-6.4	-4.4	-1.9	6.6	43	77	88	89	10	1.8	-2.1	63	2.8	-2.5	-1.2	1.1	1.3	0.23	ABI	DOM	GRN	GRS
ACC	57%	7% 47% 61% 77% 68% 67% 65% 67% 56% 43% 63% 59% 64% 62% 60% 59% \$71															\$71	\$89	\$66	\$75		
PERC	57% 47% 61% 77% 68% 67% 69% 65% 67% 56% 43% 63% 59% 64% 62% 60% 59% \$57 \$71 92 94 87 93 76 80 94 68 96 53 90 55 92 98 72 23 74 59 98															98	94	97	99			
	Expe	cted Av	erage l	Progen	y Value	s – USA	179607	722 x N	BNH3													
EBV	0.9	-0.3	-2.9	5.0	59	102	123	111	14	2.1	-4.4	71	4.4	-1.9	-1.4	1.1	1.9	0.28	\$121	\$121	\$128	\$118
ACC	68%	54%	80%	88%	83%	82%	82%	75%	73%	75%	49%	74%	73%	75%	72%	70%	72%	60%	42%	41%	44%	44%

Purchased by:

Ś

Lot 44 BEN NEVIS DENMIST H23*

HBR 11/7/12 AMFU,CA15%,DDFU,NHFU ID NBNH23

MATING TYPE AI

B/R NEW DESIGN 036" TE MANIA UNLIMITED U3271" TE MANIA LOWAN R426+96" **TE MANIA INFINITY 04 379 AB"** TE MANIA PRINCE 153-93" TE MANIA 95102" TE MANIA 92F006 AB" EXAR EXPAND 1241" BEN NEVIS ZEXAR Z86° BEN NEVIS JEAN X114" BEN NEVIS DENMIST F206" BEN NEVIS VAQUERO V30" BEN NEVIS JANET X037 X37" BEN NEVIS VIBRANT V18" Denmist H23 is a big, strong, proud cow who clicks with whoever we join her to. Her first calf K12 sold for \$11,000 in 2015 to the Bulloch family and has bred really well for them since. We are fortunate to have three retained daughters. Most of the other Infinity cows in the sale we joined to Meta to complement their more moderate type, but in this case we used H23's extra power to create something special to Beast Mode.

TACE	Septe	mber 2	020 Tra	ansTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
The second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	1.3	-3.9	-4.2	3.8	38	73	89	79	10	2.1	-4.7	48	1.6	-2.1	-0.9	-0.2	2.3	0.5	ABI	DOM	GRN	GRS
ACC	64%	58% 63% 80% 74% 72% 77% 72% 67% 60% 55% 66% 64% 70% 68% 65% 64% 57% \$															\$93	\$97	\$100	\$90		
PERC	57	57 92 53 38 94 88 94 85 94 38 51 95 98 95 64 79 33 87 88															89	86	80	93		
	Expe	cted Av	verage	Progen	y Value	s – USA	179607	722 x N	BNH23													
EBV	4.8	-0.1	-4.1	3.6	56	100	123	105	15	2.3	-5.7	63	3.8	-1.7	-1.3	0.5	2.4	0.41	\$132	\$125	\$145	\$125
ACC	72%	59%	81%	89%	86%	84%	86%	79%	73%	77%	55%	75%	75%	78%	75%	73%	74%	62%	46%	43%	47%	47%

Purchased by:

Lot 45 **BEN NEVIS KIWI H42**#

HBR 4/8/12 AMFU,CAFU,DD5%,NHFU

B/R NEW DESIGN 036# TE MANIA UNLIMITED U3271# TE MANIA LOWAN R426+96# TE MANIA INFINITY 04 379 AB# TE MANIA PRINCE 153-93# TE MANIA 95102# TE MANIA 92F006 AB#

B/R NEW FRONTIER 095# **BEN NEVIS FRONTIER B88**^{sv} BEN NEVIS KIWI V48# **BEN NEVIS KIWI F111#** PERRY POWER DESIGN 715# BEN NEVIS KIWI Z70# BEN NEVIS DIANA X65#

ID NBNH42

An absolute thumper of a cow with the constitution and type we have strived for. Her daughter Lot 78 - K17 was short listed as a donor and weaned a cracking bull calf which was the highlight of this year's Autumn drop. She has three retained daughters in all and her calf was puchased this year by Bowenfells Angus for \$16,000 and will be used by us as a stud sire also to join over heifers this year. Special cow.

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Television for	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	election	Indexe	es
EBV	1.8	-1.8	-2.3	3.8	39	78	103	93	14	2.0	-1.2	58	5.3	-0.3	-0.3	-0.6	2.3	0.76	ABI	DOM	GRN	GRS
ACC	63%	58%	78%	80%	74%	73%	77%	72%	69%	65%	55%	67%	65%	70%	69%	66%	65%	59%	\$95	\$94	\$98	\$95
PERC	54	84	82	38	90	77	74	60	74	43	95	75	56	54	46	90	33	98	87	90	82	89
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NP37 x	NBNH4	2													
EBV	3.6	0.6	-4.8	5.0	52	97	126	111	16	2.9	-4.2	71	5.8	-1.2	-0.6	0.1	2.5	0.51	\$130	\$118	\$143	\$124
ACC	59%	51%	71%	76%	70%	70%	72%	67%	62%	63%	45%	63%	62%	66%	64%	62%	62%	53%	38%	35%	39%	38%

MATING TYPE AI

Purchased by:

Ś

Lot 46 BEN NEVIS KIWI H44*

HBR	4/8/	12	AMFU	J,CA9%	,DD1%,N	IHFU	ID	NBNH	44	MAT	ING TY	PE AI							
Т		NEW DE A UNLII				RA	5	DLAND LAND Z). While receiving plenty of softness and doing ability
	TE M	E MANIA LOWAN R426+96# INFINITY 04 379 AB# BEN N						DORIS W				attribute calf to N					ie is a m	aternal s	ister to Lot 30 – K117 and her
TE MA	NIA IN	FINITY	04 379	AB#	# BEN NEVIS KI				#				retarrior	priic wit	i De a cia	ackei.			
	TE M	ANIA P	RINCE 1	153-93#			CRUS	ADER O	F STERM	AB#									
Т	E MANI	A 95102	#			BE	N NEVI	S KIWI I	B52#										
	TE M	ANIA 9	2F006 A	\В #			BEN N	VEVIS YI	ELP Y14	ŧ									
TACE	Septe	mber 2	020 Tra	ansTası	man Ang	gus Ca	ttle Eva	aluation	ı					Т	raits ob	served:	BWT, 6	500WT, S	Scan (EMA, Rib, Rump, IMF)
Calls Failures	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	Selection Indexes

	TE M	ANIA 9	2F006 A	∖B#			BEN N	IEVIS YE	ELP Y14	÷												
TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Calle Francisco	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	election	n Indexe	s
EBV	2.6	-1.0	-3.7	3.7	39	74	103	90	13	2.0	-2.7	51	1.7	-1.5	0	-1.1	2.3	0.44	ABI	DOM	GRN	GRS
ACC	65%	59%	63%	80%	75%	73%	77%	73%	67%	63%	56%	67%	66%	70%	69%	66%	65%	59%	\$95	\$90	\$99	\$94
PERC	48	80	62	35	91	87	74	67	84	43	85	92	97	87	37	96	33	83	87	94	81	90
	Expe	cted Av	verage	Progen	y Value	s – NBM	NM51 x	NBNH	14													
EBV	0.8	1.9	-0.7	4.6	53	100	133	114	18	2.3	-4.5	73	3.2	-1.8	-1.1	-0.4	2.3	0.18	\$125	\$112	\$137	\$120
ACC	71%	60%	79%	88%	84%	81%	82%	76%	68%	75%	55%	72%	70%	74%	73%	70%	69%	61%	45%	43%	46%	46%

Purchased by:

LOT 45. BEN NEVIS KIWI H42

LOT 48. BEN NEVIS JUNE H88

Lot 47 BEN NEVIS JEAN H83*

30/7/12 AMFU,CA2%,DDFU,NHFU ID NBNH83

KENNY'S CREEK SANDY S15^{sv} TE MANIA VICEROY V342^{sv} TE MANIA LOWAN R133+96*

Jean H83 is a beautiful big, soft cow who is beautifully bred with tons of capacity. We are sure you won't miss her. Her son Megatron M100 sold for \$13,000 to Midas cattle Company in 2017.

TE MANIA UNLIMITED U3271* TE MANIA LOWAN R426+96* **TE MANIA INFINITY 04 379 AB*** TE MANIA PRINCE 153-93* TE MANIA 95102* TE MANIA 92F006 AB*

B/R NEW DESIGN 036#

BEN NEVIS JEAN Y80# PINE CREEK NUDGE N36+93# BEN NEVIS JEAN Q62+95# BEN NEVIS JEAN K33+90#

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	4.9	0.9	-4.8	2.5	37	72	93	82	10	2.4	-4.5	51	3.5	-2.0	-1.3	0.2	2.1	0.73	ABI	DOM	GRN	GRS
ACC	65%																\$104	\$102	\$110	\$100		
PERC	32	67	42	13	94	90	89	79	95	26	55	91	85	94	75	64	40	97	77	76	70	83
	Expe	cted Av	erage l	Progen	y Value	s – NBM	NM51 x	NBNH	83													
EBV	2.0	2.8	-1.2	4.0	52	99	128	110	17	2.5	-5.4	74	4.1	-2.1	-1.8	0.3	2.2	0.33	\$130	\$118	\$142	\$123
ACC	71%	61%	89%	88%	84%	82%	82%	76%	68%	77%	56%	73%	71%	74%	74%	70%	69%	61%	46%	43%	46%	46%

MATING TYPE AI

Purchased by:

HBR

Ś

Lot 48 BEN NEVIS JUNE H88*

HBR 4/8/12 AMFU,CAFU,DDFU,NH99% ID NBNH88 MATING TYPE Natural
VERMILION DATELINE 7078* C A FUTURE DIRECTION 5321* Mumma mi

J & C APPEAL A10[™] J & C MISS CHEYENNE W3[#] RAFF EMPIRE E269[™] S A F 598 BANDO 5175[#] RAFF DORIS A55[#] RAFF DORIS Y70[#] C A FUTURE DIRECTION 5321* BEN NEVIS XEROX X101^{IIV} BEN NEVIS GERANIUM Q55+95^{SV} BEN NEVIS JUNE C23* BEN NEVIS TAN T41* BEN NEVIS JUNE W117* BEN NEVIS JUNE W1106* Mumma mia this is a hoofa a of a cow with a ton of volume and a kind disposition. June H88 always turns out one of the heaviest weaners in the draft each year. A beautiful cow in the style of all our Empires – soft and powerful. Her son M26 was one of the powerhouses of the 2018 sale selling for \$10,000 to the Carter Family at Wauchope. Her calf to Inertia will be very exciting.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
taniana kepa Géréanake	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-10.9	-14.7	-0.9	7.9	55	98	129	116	19	1.2	0.8	77	5.4	-0.1	0.3	0.8	0.5	-0.36	ABI	DOM	GRN	GRS
ACC	60%	0% 52% 59% 80% 74% 73% 77% 72% 68% 66% 42% 65% 63% 69% 67% 63% 62% 47% \$76															\$76	\$83	\$61	\$86		
PERC	98																97	97	98	95		
	Expe	cted Av	erage I	Progen	y Value	s – USA	186360	043 x N	BNH88													
EBV	-5.1	-7.7	-4.0	5.8	60	105	132	108	18	1.3	-1.4	76	7.6	0.4	0.8	0.3	2.3	0.27	\$115	\$110	\$117	\$115
ACC	66%	55%	78%	88%	84%	81%	81%	77%	72%	71%	44%	73%	69%	73%	70%	68%	67%	53%	41 %	40%	42%	42%

Purchased by:

Lot 49 BEN NEVIS UMBRA H95*

HBR	4/8/12	AMFU,CA1%,DD22%,NHFU	ID NBNH95	MATING TYPE AI
HBR	4/8/12	AMFU,CA1%,DD22%,NHFU	ID NBNH95	MATING TYPE A

 VERMILION DATELINE 7078#
 TE MANIA KELP K207+90#

 J & C APPEAL A10^{PV}
 DUNOON REAGAN R093+96^{SV}

 J & C MISS CHEYENNE W3#
 TE MANIA BEEAC L145+91#

 RAFF EMPIRE E269^{SV}
 BEN NEVIS UMBRA X015 X15#

 S A F 598 BANDO 5175#
 BEN NEVIS TAN T41#

 RAFF DORIS A55#
 BEN NEVIS UMBRA V27#

 RAFF DORIS Y70#
 BEN NEVIS UMBRA T120#

A stunning cow typical of the Empire's with a proud front, long, strong spine and a deep rib. This joining to Beast Mode should be right in the pocket.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
transformative Cally Franceson	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	\$S
EBV	-5.4	-6.4	-0.6	4.8	41	73	87	76	12	0.8	-0.7	55	2.8	-0.6	0.5	0.1	1.0	-0.22	ABI	DOM	GRN	GRS
ACC	63%																\$80	\$45	\$71			
PERC																98	99	99				
	Expe	cted Av	verage l	Progen	y Value	s – USA	179607	722 x N	BNH95													
EBV	1.4	-1.3	-2.3	4.1	58	99	122	104	16	1.6	-3.7	67	4.4	-1.0	-0.6	0.6	1.8	0.05	\$116	\$116	\$118	\$116
ACC	71%	58%	91%	89%	86%	85%	87%	79%	74%	79%	50%	75%	75%	78%	75%	72%	74%	58%	44%	43%	46%	46%

Purchased by:

\$

Lot 50 BEN NEVIS JEAN H100*

HBR 4/8/12 AMFU,CAFU,DDFU,NH12% ID NBNH100 MATING TYPE AI

VERMILION DATELINE 7078* J & C APPEAL A10PV J & C MISS CHEYENNE W3# RAFF EMPIRE E269sv S A F 598 BANDO 5175# RAFF DORIS A55#

C A FUTURE DIRECTION 5321# BEN NEVIS XEROX X101PV BEN NEVIS GERANIUM Q55+95sv **BEN NEVIS JEAN A36 A37#** VICTOREE SCOTCH CAP K46+90sv Empire daughters have had such a great retention rate in our herd. He really was a special bull. H100's son M135 sold for \$11,000 to the Ingham family at Orange and we have three beautiful retained daughters.

AFF DO RAFF	RIS A55 DORIS				BE	N NEVI: BEN N	2	J46# AN R23	+96*												
Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	1					τ	raits obs	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
CEDir	CEDtr	GL	BW	Tasman Angus Cattle Evaluation Traits observed: BWT, 600WT, Scan 3W 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F														S	election	Indexe	s
-6.8	-8.6	-0.1	7.3	49	85	115	107	13	2.0	-0.9	69	3.7	-1.1	-1.1	1.2	0.9	-0.14	ABI	DOM	GRN	GRS
63%	54%	84%	81%	75%	75%	79%	74%	69%	64%	43%	66%	65%	71%	69%	65%	65%	48%	\$83	\$88	\$77	\$88
93	99	97	97	42	54	44	31	83	43	96	30	83	79	70	20	87	15	95	95	94	94
Expe	cted Av	erage	Progen	v Value	s – NBN	NP372 >		100									Ô				

12

62%

2.6

63%

-2.4

4**1**%

67

63%

4.8

62%

-2.4

67%

-1.7

64%

1.3

62%

Purchased by:

-4.8

60%

-5.0

51%

RAFF DORIS Y70#

-1.3

75%

TACE

FRV

ACC PERC

EBV

ACC

\$

0.09

49%

2.1

62%

\$115

37%

\$125

38%

\$108

35%

\$111

37%

Lot 51 **BEN NEVIS DORMIST H124[#]**

6.3

75%

54

71%

95

71%

HBR	8/8/12	AMFU,CA1%,DD39	%,NH4% I	D NBNH124	MATING T	YPE AI
J	VERMILION & C APPEAL A1	DATELINE 7078# 0 ^{PV}		TESTONE PRECIS		A real head turner of a cow with real presence. Soft, deep and showy. Her first son sold to stud at the Benson Family, Top Waterloo for \$12,000 in 2017. There is so much potential
	J & C MISS CH	HEYENNE W3#	KOU	PAL BLACKCAP 50	1#	here in this joining to Inertia.
RAFF E	EMPIRE E269sv		BEN NEVIS D	ORMIST C75#		
	S A F 598 BA	NDO 5175#	FOR	RES NEW DESIGI	N U95#	
R	AFF DORIS A55	#	BEN NEV	IS DORMIST Y82	2#	

128

73%

117

68%

BEN NEVIS DORMIST S10*

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	l					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
testerar have	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	election	Indexe	s
EBV	-15.7	-13.4	2.1	7.2	45	79	99	96	15	0.5	1.1	62	4.1	-2.7	-3.4	1.7	1.2	-0.55	ABI	DOM	GRN	GRS
ACC	62%	1% 53% 84% 81% 74% 73% 78% 73% 68% 60% 42% 65% 63% 69% 67% 63% 62% 47% 47%															\$49	\$68	\$41	\$56		
PERC																99	99	99	99			
	Expe	cted Av	erage l	Progen	y Value	s – USA	186360	043 x N	BNH12	4												
EBV	-7.5	-7.1	-2.5	5.4	55	95	117	98	16	0.9	-1.3	68	7.0	-1.0	-1.1	0.7	2.6	0.17	\$101	\$103	\$107	\$100
ACC	67%	55%	91%	89%	84%	81%	81%	77%	72%	68%	44%	73%	69%	73%	70%	68%	67%	53%	41%	40%	42%	42%

Purchased by:

LOT 52. BEN NEVIS GERANIUM H166

LOT 53. BEN NEVIS DENMIST H220

Lot 52 **BEN NEVIS GERANIUM H166**#

HBR 29/8/12

AMFU,CA11%,DD2%,NHFU ID NBNH166 MATING TYPE Natural

TE MANIA UNLIMITED U3271* TE MANIA INFINITY 04 379 AB* TE MANIA 95102# **BEN NEVIS DINO F6sv** BEN NEVIS ZEXAR Z86PV **BEN NEVIS JEAN D114**# BEN NEVIS JEAN Y80#

HOFF LIMITED EDITION S C 594* DSK HLE AHEAD OF THE PACK A57sv DSK HR SHADY LADY W62#

Geranium H166 is a big broody cow with a fine soft skin. She has been a mother of bulls mainly with four sons who have featured in our sales and one retained daughter. Her joining to Meta will be very impressive and powerful.

BEN NEVIS GERANIUM D83# FORRES NEW DESIGN U95#

BEN NEVIS GERANIUM Y108# BEN NEVIS GERANIUM T101#

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	2.0	0.3	-4.7	3.9	36	68	87	70	11	1.3	-4.5	46	1.8	0.2	0.6	-0.2	1.4	0.71	ABI	DOM	GRN	GRS
ACC	55%	45%	57%	78%	71%	70%	74%	68%	63%	52%	38%	60%	60%	66%	64%	59%	58%	41 %	\$89	\$93	\$84	\$91
PERC	52	72	44	40	96	95	95	92	92	77	55	97	97	37	22	79	70	97	91	91	91	92
	Expe	cted Av	erage l	Progen	y Value	s – NBM	VM51 x	NBNH	166													
EBV	0.5	2.5	-1.2	4.7	52	97	125	104	17	1.9	-5.4	71	3.2	-1.0	-0.8	0.1	1.8	0.32	\$122	\$114	\$129	\$119
ACC	66%	53%	76%	87%	82%	80%	81%	74%	66%	69%	46%	69%	67%	72%	70%	66%	65%	52%	41%	40%	42%	42%

Purchased by:

BEN NEVIS DENMIST H220[#] Lot 53

2/8/12 AMFU,CA12%,DD10%,NHFU HBR **ID** NBNH220

MATING TYPE Natural

VERMILION DATELINE 7078# J & C APPEAL A10PV | & C MISS CHEYENNE W3# RAFF EMPIRE E269sv S A F 598 BANDO 5175# **RAFF DORIS A55**# RAFF DORIS Y70#

EXAR EXPAND 1241# BEN NEVIS ZEXAR Z86PV **BEN NEVIS IEAN X114**# **BEN NEVIS PATRICIA D117#** FORRES NEW DESIGN U95# BEN NEVIS PATRICIA Y116# BEN NEVIS PATRICIA+94#

Its not hard to pick Denmist H220 out. She is a a really good looking cow with a great Angus head, soft, silky skin and a terrific constitution. She and her calf are geneticals to the lovely Lot 48. This should be a really good match up with Inertia as it retains the Empire cows thickness and power with added carcase.

TACE	Septe	mber 2	020 Tra	insTasn	nan Ang	gus Ca	ttle Eva	luation						Ti	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
The second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-5.5	-11.4	-1.6	7.4	47	80	106	102	12	0.7	-2.0	61	3.9	-2.8	-3.1	1.9	0.9	-0.4	ABI	DOM	GRN	GRS
ACC	60%	52%	60%	79%	70%	69%	71%	68%	67%	62%	41 %	62%	60%	64%	62%	60%	59%	46%	\$81	\$88	\$78	\$83
PERC	90	99	89	97	58	70	66	41	87	93	91	61	80	99	97	6	87	3	95	95	93	97
	Expe	cted Av	erage l	Progen	y Value	s – USA	186360	043 x N	BNH22	0												
EBV	-2.4	-6.1	-4.3	5.5	56	96	121	101	15	1.0	-2.8	68	6.9	-1.0	-1.0	0.8	2.5	0.25	\$117	\$113	\$125	\$114
ACC	66%	55%	79%	88%	82%	79%	78%	75%	72%	69%	43%	71%	68%	70%	67%	66%	66%	52%	40%	39%	41%	41 %

Purchased by:

Ś

BEN NEVIS FLORYX G8[#] Lot 54

HBR 29/7/11 AMFU,CAFU,DDFU,NH1%

MATING TYPE AI

B/R NEW DESIGN 036# TE MANIA UNLIMITED U3271# TF MANIA LOWAN R426+96#

C A FUTURE DIRECTION 5321# BEN NEVIS XEROX X101PV BEN NEVIS GERANIUM Q55+95^{sv} **BEN NEVIS FLORYX E123#**

ID NBNG8

VICTOREE SCOTCH CAP K46+90sv **BEN NEVIS FLORYX U87**#

Floryx is the only daughter of our treasured matriarch, E123 from nine progeny. Both mother and daughters bull calves never failed to make the top pen with G8's son M99 selling in 2017 for 12,000. Her only daughter J130 Lot has also made the donor pen and her sons have averaged \$12,500 at sale with one retained for stud. G8 is a beautiful soft, deep cow with tremendous capacity.

TE MANIA INFINITY 04 379 AB# TE MANIA PRINCE 153-93# TE MANIA 95102# TE MANIA 92F006 AB#

BEN NEVIS FLORYX J16+89#

TACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob:	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
Technica Acad	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	\$S
EBV	-2.4	-1.8	-5.8	4.0	41	78	97	93	11	2.3	-4.0	55	2.0	-0.4	0	-0.4	1.7	0.41	ABI	DOM	GRN	GRS
ACC	66%	60%	83%	81%	76%	76%	78%	73%	73%	69%	56%	69%	68%	72%	71%	68%	66%	60%	\$87	\$92	\$87	\$88
PERC	79	84	26	43	84	79	85	60	92	29	65	82	96	57	37	85	56	80	93	92	89	94
	Expe	cted Av	verage l	Progen	y Value	s – NBI	NP37 x	NBNG	3													
EBV	1.5	0.6	-6.6	5.1	53	97	123	111	15	3.0	-5.6	70	4.1	-1.3	-0.5	0.2	2.2	0.34	\$126	\$117	\$137	\$121
ACC	60%	52%	74%	77%	71%	72%	72%	68%	64%	65%	46%	64%	63%	67%	65%	63%	62%	53%	39%	36%	40%	39%

Purchased by:

Lot 55 BEN NEVIS GERANIUM G19*

4/8/11 AMF

HBR

AMFU,CAFU,DD7%,NHFU ID NBNG19 MATING TYPE AI

B/R NEW DESIGN 036[#] TE MANIA UNLIMITED U3271[#] TE MANIA LOWAN R426+96[#] **TE MANIA INFINITY 04 379 AB[#]** TE MANIA PRINCE 153-93[#] TE MANIA 95102[#] TE MANIA 92F006 AB[#]

BANQUET XPLANATION X060# BANQUET BUNDY B002^{5V} BLACK GOLD CHAMPAGNE J031+89# BEN NEVIS GERANIUM E64#

> BEN NEVIS QUASIM+95# BEN NEVIS UTAH U101#

BEN NEVIS GERANIUM E40.#

Ahhh, one of our fav's and features on the back cover. We should have flushed this cow as she is the big capacity dam of Donor Dam J82 whose two sons M226 sold for \$10,000 in 2017 to Point Pastoral and L3 for \$14,000 in 2018 to Warrabah Station. A descendent of the great E40 with all daughters retained and her only bull calf Q238 this year a standout. Her calf at foot by Meta is a knockout.

TACE	Sente	mber 2	020 Tra	InsTasn	nan ∆n	aus Ca	ttle Eva	luation						т	raits ob	served:	BWT 6	00WT, S	Scan (El		Rump	IME)
\sim	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	`	election	· ·	· /
EBV	5.2	-2.2	-1.9	2.3	33	66	83	73	12	2.9	-2.8	41	3.1	-1.0	0.3	-0.7	2.6	0.57	ABI	DOM	GRN	GRS
ACC	66%	60%	83%	81%	75%	75%	79%	74%	65%	63%	55%	68%	67%	72%	71%	67%	67%	58%	\$89	\$93	\$93	\$88
PERC	29	86	87	11	99	97	97	91	84	12	83	99	89	76	29	91	23	92	91	91	85	94
	Expe	cted Av	verage	Progen	y Value	s – NBI	1M51 x	NBNG	19													
EBV	2.1	1.3	0.3	3.9	50	96	123	106	18	2.7	-4.5	69	3.9	-1.6	-1.0	-0.2	2.4	0.25	\$122	\$114	\$134	\$117
ACC	71%	61%	89%	89%	84%	82%	83%	77%	67%	75%	54%	73%	71%	75%	74%	70%	70%	60%	45%	43%	46%	46%

Purchased by:

\$

Lot 56 BEN NEVIS CELESTE G77*

HBR	23/8/11	AMFU,CA2%,DD99%,NHFU	ID NBNG77	MATING TYPE AI
	B/R NEW D	DESIGN 036#	BR MIDLAND#	This pro

TE MANIA UNLIMITED U3271* TE MANIA LOWAN R426+96* **TE MANIA INFINITY 04 379 AB**# TE MANIA PRINCE 153-93* TE MANIA 95102* TE MANIA 92F006 AB* BR MIDLAND# DUNOON MIDLAND A017^{PV} DUNOON DANDLOO W035^{PV} BEN NEVIS CELESTE E25# ONEILLS STOCKMAN 587# BEN NEVIS CELESTE V068# BEN NEVIS CELESTE Q49+95# This process of going through all the cows with a fine tooth comb and analysing their progeny has been amazing for us. We kick ourselves that we didn't flush this cow but have thankfully flushed her daughter and retained her Grandson P242 as our Stud Sire. She has been a prolific bull producer for us.

TACE	Septe	mber 2	020 Tra	insTasn	nan Ang	gus Ca	ttle Eva	luation	I					Ti	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	2.7	2.0	-4.1	2.7	37	69	80	60	8	2.5	-4.7	47	5.9	0.2	0.1	0.1	2.1	0.49	ABI	DOM	GRN	GRS
ACC	65%	60%	65%	81%	75%	75%	78%	74%	69%	66%	57%	68%	67%	72%	70%	67%	66%	60%	\$99	\$104	\$99	\$98
PERC	47	58	55	16	95	95	98	97	98	22	51	96	45	37	34	68	40	87	83	72	81	86
	Expe	cted Av	erage l	Progen	y Value	s – NBN	1M51 x	NBNG	77													
EBV	0.9	3.4	-0.9	4.1	52	97	122	99	16	2.5	-5.5	71	5.3	-1.0	-1.1	0.2	2.2	0.21	\$127	\$119	\$137	\$122
ACC	71%	61%	80%	89%	84%	82%	83%	77%	69%	76%	55%	73%	71%	75%	73%	70%	69%	61%	45%	44%	46%	46%

Purchased by:

......

\$

G101 is a beautifully feminine, big ribbed cow with a fine soft skin. She is the maternal

brother to the \$15,000 Ben Nevis Templar sold to stud at Messines at Guyra.

\$

Lot 57 BEN NEVIS FLORINA G101*

HBR	26/8/11	AMFU,CA1%,DDFU,NHFU	ID NBNG101	MATING TYPE Natural	
-----	---------	---------------------	------------	---------------------	--

S A F FOCUS OF E R#	BEN NEVIS QUASIM+95#
MYTTY IN FOCUS [#]	BEN NEVIS VOLT V64#
MYTTY COUNTESS 906*	BEN NEVIS JEAN R38+96#
BEN NEVIS ERITREA E6 ^{sv}	BEN NEVIS FLORINA Y89#
BULLIAC X-RAY X10#	BEN NEVIS STOCKMASTER T73#
BEN NEVIS DORMIST C46#	BEN NEVIS FLORINA V066*
BEN NEVIS DORMIST A61*	BEN NEVIS FLORINA S38#

S38# TACE September 2020 TransTasman Angus Cattle Evaluation Traits observed: BWT, 600WT, Scan (EMA, Rib, Rump, IMF) CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F Selection Indexes 6.0 0.9 -4.4 3.6 39 65 87 78 12 2.4 -2.6 3.1 -1.7 -1.6 1.5 0.6 0.03 GRS EBV 47 ABI DOM GRN 51% 79% 71% 57% 4**1**% \$83 ACC 55% 43% 71% 75% 68% 62% 52% 37% 61% 59% 65% 64% 59% \$93 \$72 \$89 PERC 24 67 49 33 92 97 95 86 86 26 86 96 89 91 81 12 94 32 95 91 95 94 Expected Average Progeny Values - NBNP37 x NBNG101 EBV 5.7 2.0 -5.9 4.9 52 90 119 104 16 3.1 -4.9 65 4.7 -1.9 -1.3 1.1 1.6 0.15 \$124 \$118 \$130 \$121 59% 36% 59% 62% 59% 58% 44% 34% ACC 55% 44% 58% 76% 69% 69% 71% 65% 57% 60% 64% 31% 36% 35%

Purchased by:

Lot 58 BEN NEVIS GERANIUM G201#

HBR 10/9/11 AMFU,CAFU,D

AMFU,CAFU,DDFU,NHFU ID NBNG201

MATING TYPE Natural

B/R NEW DESIGN 036[#] B/R NEW FRONTIER 095[#] WHITE FENCE PRIDE H1[#] BEN NEVIS FRONTIER B88[™] BEN NEVIS QUASIM+95[#] BEN NEVIS KIWI V48[#] BEN NEVIS MEGASTAR+92[#]

VERMILION YELLOWSTONE* VERMILION B JESTRESS 3912* BEN NEVIS GERANIUM A84* BEN NEVIS TAN T41* BEN NEVIS GERANIUM V29* BEN NEVIS GERANIUM T101*

VERMILION DATELINE 7078#

G201 is a descendent of the great E40 and has inherited her classic fine skin and her beautiful type. She has produced Donor Dam Lot 95 – J115 and daughter M64 also earmarked for the donor pen as well as son L118 selling for 10,000 to Noella Spicer in 2017.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob:	served:	BWT, 6	00WT, S	Scan (E	MA, Rib	, Rump	, IMF)
A.X.	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	0.9	1.1	-3.6	4.9	43	77	101	89	7	1.5	-1.1	55	4.6	-1.1	-0.9	0.5	1.6	0.02	ABI	DOM	GRN	GRS
ACC	57%	48%	63%	78%	71%	71%	72%	67%	69%	58%	43%	62%	59%	63%	61%	58%	57%	46%	\$94	\$98	\$92	\$97
PERC	60	65	64	65	77	80	78	68	99	68	96	83	69	79	64	49	61	31	88	84	86	87
	Expe	cted Av	erage l	Progen	y Value	s – NM	MP15 x	NBNG	201													
EBV	4.9	6.5	-5.7	3.9	48	91	115	97	16	2.2	-3.4	66	5.5	-0.3	0	0.2	2.1	0.14	\$121	\$116	\$126	\$119
ACC	61%	48%	78%	83%	72%	71%	72%	68%	64%	60%	4 1 %	63%	59%	63%	61%	59%	58%	48%	36%	33%	37%	36%

Purchased by:

Ś

Lot 59 BEN NEVIS DORMIST F71*

HBR 5/8/10 AMFU,CA1%,DDFU,NHFU ID NBNF71

MATING TYPE Natural

BANQUET ZEALFUL Z021^{PV} BANQUET DREAM X087" BEN NEVIS DEL PEDRO D3^{SV} BEN VICTOREE SCOTCH CAP K46+90^{SV} BEN NEVIS FLORYX U87" BEN NEVIS FLORYX J16+89"

BANQUET MERLOT X135#

BULLIAC X-RAY X10* BULLIAC FLORA P8+94* BEN NEVIS DORMIST C46* VERMILION YELLOWSTONE* BEN NEVIS DORMIST A61* BEN NEVIS DIANA W096*

PAPA EQUATOR 2928#

What a humdinger of a cow – such volume and structural integrity and in our book royalty. Dormist F71 is a maternal sister to our Stud Sire Ben Nevis Eritrea who features highly in our most successful cows in this catalogue and is the paternal grand sire of \$32k Metamorphic. F71 is a Donor Dam in her own right and dam of our currently highest ranking Donor Lot 63 – Dormist L28 as well being the dam to Next Gen who sold to Bowenfels as a Stud Sire for \$14,000 in 2018.

TACE	Septe	mber 2	020 Tra	nsTasr	nan Ang	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (E	MA, Rib	, Rump	, IMF)
Television for	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-1.2	2.4	-5.3	5.7	54	99	130	128	13	0.5	0.8	80	6.3	-2.3	-2.6	2.1	0.5	-0.23	ABI	DOM	GRN	GRS
ACC	58%	46%	54%	80%	73%	72%	77%	71%	65%	51%	38%	63%	61%	68%	66%	62%	61%	43%	\$103	\$109	\$99	\$109
PERC	73	54	34	81	16	12	13	8	80	96	99	6	37	97	94	4	95	9	78	56	81	66
	Expe	cted Av	erage l	Progen	y Value	s – NM	MP15 x	NBNF	71													
EBV	3.8	7.1	-6.6	4.3	54	101	129	117	18	1.7	-2.5	79	6.3	-0.9	-0.9	1.0	1.6	0.01	\$125	\$121	\$130	\$125
ACC	61%	47%	73%	84%	73%	72%	74%	70%	62%	56%	38%	63%	60%	66%	63%	61%	60%	47%	36%	33%	37%	36%

Purchased by:

.....

Ś

Lot 60 BEN NEVIS DORMIST F55*

HYLINE RIGHT TIME 338" HYLINE RIGHT WAY 781" HYLINE ELLEN 86" BEN NEVIS DORMIST D63" VERMILION YELLOWSTONE" BEN NEVIS DORMIST A61" BEN NEVIS DIANA W096"

ID NBNF55

A pin up, front paddock cow that has some years on her but is the Beyonce of her time. She had one of the best bull calves in this years sale. Her and Meta's power will create one hell of a calf. Has twin bull calves at foot.

TACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	-7.6	-4.1	-1.9	6.6	51	95	128	127	8	3.2	-3.1	69	6.0	-1.6	-1.1	0.9	1.5	0.47	ABI	DOM	GRN	GRS
ACC	66%	61%	83%	81%	75%	74%	78%	73%	71%	63%	56%	68%	66%	71%	70%	67%	66%	59%	\$109	\$101	\$115	\$107
PERC	95	93	87	93	29	20	16	8	98	7	79	30	43	89	70	31	65	85	69	79	63	71
	Expe	cted Av	verage I	Progen	y Value	s – NBI	VM51 x	NBNF5	55													
EBV	-4.3	0.3	0.3	6.1	59	110	146	133	16	2.9	-4.7	83	5.3	-1.9	-1.7	0.6	1.9	0.2	\$132	\$118	\$145	\$127
ACC	71%	61%	89%	89%	84%	82%	83%	76%	70%	75%	55%	73%	70%	74%	73%	70%	69%	61%	45%	44%	46%	46%

MATING TYPE AI

Purchased by:

\$

Lot 61 BEN NEVIS GERANIUM F11^{PV}

HBR	23/8/10	AMFU,CAFU,DDFU,NHFU	ID NBNF11	MATING TYPE AI

B/R NEW DESIGN 036# TE MANIA UNLIMITED U3271# TE MANIA LOWAN R426+96# **TE MANIA INFINITY 04 379 AB#** TE MANIA PRINCE 153-93# TE MANIA 95102# TE MANIA 92F006 AB# BANQUET MERLOT X135[#] BANQUET ZEALFUL Z021^{pv} BANQUET DREAM X087[#] BEN NEVIS GERANIUM D55^E TC STOCKMAN 2164[#] BEN NEVIS GERANIUM T101[#] BEN NEVIS GERANIUM E40.[#]

Another of our hands-down favourite Donor cows. She sold four bulls at an average of \$11,000 and we have four retained daughters who are treasured by us. She is typical Geranium with her fine skin and extra X factor. The power of female genetics is no more evident than in her niece Lot 96- J126.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation						Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
testerie her	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-16.8	-12.9	0	6.2	45	79	96	83	10	3.1	-2.5	55	6.0	0	1.5	-1.1	2.0	1.1	ABI	DOM	GRN	GRS
ACC	66%	5% 61% 83% 81% 76% 76% 79% 74% 72% 70% 56% 70% 68% 72% 71% 69% 68% 61% \$59															\$68	\$50	\$64			
PERC	99																99	99	99	99		
	Expe	cted Av	erage l	Progen	y Value	s – USA	179607	722 x N	BNF11													
EBV	-4.3	-4.6	-2.0	4.8	59	102	127	108	14	2.8	-4.6	67	6.0	-0.7	-0.1	0	2.3	0.71	\$115	\$110	\$120	\$112
ACC	73%	61%	91%	90%	87%	86%	87%	80%	75%	82%	55%	77%	77%	79%	77%	75%	76%	64%	47%	45%	48%	48%

Purchased by:

.....

LOT 63. BEN NEVIS DORMIST L28 pictured with her recent calf

Stationhand Hamish Worthing weighing calves

BEN NEVIS FLOR-H L12[#] Lot 62

10/7/15 AMFU,CAFU,DDFU,NHFU **ID** NBNL12 MATING TYPE AI

B/R NEW DIMENSION 7127sv TE MANIA BARTEL B219PV TE MANIA JEDDA W85# AYRVALE BARTEL E7PV **MYTTY IN FOCUS#** EAGLEHAWK JEDDA B32sv EAGLEHAWK JEDDA Z48#

TC TOTAL 410# POSS TOTAL IMPACT 745# POSS BLACKCAP 5116# **BEN NEVIS LASSIE J108# BEN NEVIS AROD A97sv** BEN NEVIS D123# BEN NEVIS LASSIE+93#

A very functional and tidy cow that has two retained heifers by us. L12 has a great udder and teat set up in milk and this genetic combination oozes maternal value. The joining with Exclusive will complement it perfectly.

TACE	Septe	mber 2	2020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
A.A.	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	2.0	8.6	-4.4	5.5	56	95	134	120	14	2.4	-6.6	77	5.2	-1.3	-1.0	0.8	2.1	0.2	ABI	DOM	GRN	GRS
ACC	62%	2% 57% 68% 77% 71% 71% 75% 71% 63% 61% 52% 65% 63% 68% 67% 64% 63% 58% \$145															\$145	\$123	\$161	\$137		
PERC	62% 57% 68% 77% 71% 71% 75% 71% 63% 61% 52% 65% 63% 68% 67% 64% 63% 58% \$145 52 6 49 78 11 20 9 13 73 26 18 10 58 83 67 35 40 55 8															14	10	6				
	Expe	cted Av	verage l	Progen	y Value	s – USA	181304	171 x N	BNL12													
EBV	4.8	7.4	-3.9	5.0	60	104	137	117	15	2.3	-4.5	81	6.1	-0.2	-0.6	0.3	2.2	0.25	\$141	\$128	\$153	\$137
ACC	65%	52%	81%	85%	75%	74%	76%	73%	67%	66%	43%	69%	66%	69%	64%	64%	64%	53%	39%	36%	40%	39%

Purchased by:

HBR

Ś

BEN NEVIS DORMIST L28^{sv} Lot 63

HBR	23/8/15	AMFU,CAFU,DDFU,NHFU	ID NBNL28	MATING TYPE Natural
CHERY	IYLINE RIGHT HYLINE PRII YLTON STEWI N BAR PRII INCLAIR LADY	DE 265# IE D19 ^{PV} BEN N ME TIME D806#	BANQUET ZEALFUL EN NEVIS DEL PEDRO I BEN NEVIS FLORYX US EVIS DORMIST F71# BULLIAC X-RAY X10# EN NEVIS DORMIST C4 BEN NEVIS DORMIST	D3 ^{5V} other cow in our herd has the ability to create the next star like L28 – she throws extra thickness and style every time and has an inherent genetic ability to add a number set that is extremely marketable. Her magnificent Donor dam sells as Lot 59 who is the sister to our highly successful stud sire Eritrea and her maternal brother Next Gen N83 * who sold for \$14,000 in 2018 is kicking serious goals at stud duties at Bowenfells Angus in QLD. In 2020 she had the best heifer calf of the drop and arguably one of the best calves we have ever bred. We have yet to tap this cows potential but are very excited to
TACE	September	2020 TransTasman Angus Ca	attle Evaluation	Traits observed: BWT 600WT Scan (EMA Bib Bump IME)

Septe	mber 2	020 Tra	nsTasn	nan Ang	gus Ca	ttle Eva	luation	1					T	raits ob	served:	BW I, 6	00001, 5	Scan (E	MA, Rib	, Rump), IMF)					
CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es					
3.3	2.1	-6.4	3.5	50	96	126	114	15	-0.9	-1.4	73	4.4	-0.9	-0.1	0.5	1.0	-0.35	ABI	DOM	GRN	GRS					
62% 54% 64% 79% 72% 77% 71% 65% 62% 44% 67% 64% 68% 66% 64% 63% 56% \$112 \$1															\$111	\$109	\$117									
43 57 19 31 35 19 19 21 62 99 95 18 72 73 40 49 84 4 63															50	71	45									
Expe	cted Av	verage l	Progen	y Value	s – NBM	M128	x NBNL	_28																		
4.2	2.8	-6.1	3.2	48	88	117	106	15	0.8	-3.0	67	4.1	-0.4	0.4	-0.6	1.9	0.09	\$111	\$106	\$113	\$112					
64%	55%	66%	83%	76%	77%	79%	73%	65%	68%	47%	70%	68%	71%	69%	67%	66%	59%	4 1 %	38%	42%	41%					
	CEDir 3.3 62% 43 Expe 4.2	CEDir CEDtr 3.3 2.1 62% 54% 43 57 Expected Av 4.2 2.8	CEDir CEDtr GL 3.3 2.1 -6.4 62% 54% 64% 43 57 19 Expected Average I 4.2 2.8 -6.1	CEDir CEDtr GL BW 3.3 2.1 -6.4 3.5 62% 54% 64% 79% 43 57 19 31 Expected Average Progen 4.2 2.8 -6.1 3.2	CEDir CEDtr GL BW 200 3.3 2.1 -6.4 3.5 50 62% 54% 64% 79% 72% 43 57 19 31 35 Expected Average Progeny Value 4.2 2.8 -6.1 3.2 48	CEDir CEDtr GL BW 200 400 3.3 2.1 -6.4 3.5 50 96 62% 54% 64% 79% 72% 72% 43 57 19 31 35 19 Expected Average Progeny Values - NBN 4.2 2.8 -6.1 3.2 48 88	CEDir CEDtr GL BW 200 400 600 3.3 2.1 -6.4 3.5 50 96 126 62% 54% 64% 79% 72% 72% 77% 43 57 19 31 35 19 19 Expected Average Progeny Values - NBNM128 4.2 2.8 -6.1 3.2 48 88 117	CEDir CEDtr GL BW 200 400 600 MCW 3.3 2.1 -6.4 3.5 50 96 126 114 62% 54% 64% 79% 72% 72% 77% 71% 43 57 19 31 35 19 19 21 Expected Average Progeny Values - NBNM128 × NBNI 4.2 2.8 -6.1 3.2 48 88 117 106	CEDir CEDtr GL BW 200 400 600 MCW Milk 3.3 2.1 -6.4 3.5 50 96 126 114 15 62% 54% 64% 79% 72% 72% 77% 71% 65% 43 57 19 31 35 19 19 21 62 Expected Average Progeny Values - NBNM128 × NBNL28 4.2 2.8 -6.1 3.2 48 88 117 106 15	CEDir CEDtr GL BW 200 400 600 MCW Milk SS 3.3 2.1 -6.4 3.5 50 96 126 114 15 -0.9 62% 54% 64% 79% 72% 72% 77% 71% 65% 62% 43 57 19 31 35 19 19 21 62 99 Expected Average Progeny Values - NBNM128 × NBNL28 4.2 2.8 -6.1 3.2 48 88 117 106 15 0.8	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC 3.3 2.1 -6.4 3.5 50 96 126 114 15 -0.9 -1.4 62% 54% 64% 79% 72% 72% 77% 71% 65% 62% 44% 43 57 19 31 35 19 19 21 62 99 95 Expected Average Progeny Values - NBNH128 × NBNL28 4.2 2.8 -6.1 3.2 48 88 117 106 15 0.8 -3.0	3 2.1 -6.4 3.5 50 96 126 114 15 -0.9 -1.4 73 4.4 -0.9 -0.1 0.5 1.0 -0.35 ABI DOM % 54% 64% 79% 72% 77% 71% 65% 62% 44% 67% 64% 68% 66% 64% 63% 56% \$112 \$111 3 57 19 31 35 19 19 21 62 99 95 18 72 73 40 49 84 4 63 50 cpected Average Progeny Values - NBM128 x NBNL28 2 2.8 -6.1 3.2 48 88 117 106 15 0.8 -3.0 67 4.1 -0.4 0.4 -0.6 1.9 0.09 \$111 \$106														

Purchased by:

Lot 64 **BEN NEVIS DORMIST L33[#]**

APR 2	26/7/15	AM2%,CA3%,DD2%,NH2%	ID NBNL33	MATING TYPE AI
-------	---------	---------------------	-----------	----------------

BON VIEW NEW DESIGN 208sv TE MANIA UNLIMITED U3271# TC TOTAL 410# TE MANIA INFINITY 04 379 AB* TC ERICA EILEEN 2047# TE MANIA 95102# POSS TOTAL IMPACT 745# **BEN NEVIS DORMIST G16#** CONNEALY LEAD ON# UNKNOWN POSS BLACKCAP 5116# **BEN NEVIS DORMIST E109**# POSS BLACKCAP 205# BEN NEVIS DORMIST X041 X41# L33's maternal brother Quote Q16 sold for \$10,000 at this years sale. She is a lovely combination of deep maternal impact with softness and carcase with the consititution of the Impact line.

\$

TACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob:	served:	BWT, 6	00WT, S	Scan (E	MA, Rib	, Rump	, IMF)
Television for	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	-9.8	2.9	-1.7	5.1	45	77	99	112	6	2.6	-3.2	54	3.0	-2.6	-1.8	0.7	2.3	0.18	ABI	DOM	GRN	GRS
ACC																\$86	\$88	\$94	\$82			
PERC	97	49	88	70	69	80	81	24	99	19	78	86	90	98	85	40	33	52	93	95	85	97
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NP412 >		33													
EBV	-7.3	1.4	-3.4	5.8	49	86	113	122	9	2.1	-2.8	64	5.5	-2.6	-2.5	1.1	2.6	0.17	\$105	\$100	\$119	\$98
ACC	60%	52%	66%	75%	70%	69%	72%	69%	62%	62%	44%	64%	62%	66%	64%	62%	62%	53%	37%	35%	38%	38%

Lot 65 BEN NEVIS DENMIST L35*

HBR 19/8/15 AMFU,CAFU,DDFU,NHFU ID NBNL35 MATING TYPE AI LEACHMAN RIGHT TIMESV BANQUET ZEALFUL Z021PV A really pretty cow who oozes quality. She gets her funky long front and head from her dam and the thickness and thump from her sire. We have two retained daughters and a HYLINE RIGHT TIME 338# BEN NEVIS DEL PEDRO D3^{sv} stunning bull as her first calf. HYLINE PRIDE 265# BEN NEVIS FLORYX U87# CHERYLTON STEWIE D19PV **BEN NEVIS DENMIST G79#** N BAR PRIME TIME D806# HYLINE RIGHT WAY 781# SINCLAIR LADY 2P60 4465# **BEN NEVIS PATRICIA C82#** IDEAL 4465 OF 6807 4286# **BEN NEVIS VIBRANT V18*** TACE September 2020 TransTasman Angus Cattle Evaluation Traits observed: BWT, 600WT, Scan (EMA, Rib, Rump, IMF)

100						-											,		· ·	,	· · ·	· · ·
Territorian Argon	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	-7.0	-3.2	-3.4	6.9	54	94	128	126	15	2.1	-2.3	68	4.0	-2.5	-0.6	0.8	2.1	-0.03	ABI	DOM	GRN	GRS
ACC	60%	51%	63%	78%	72%	72%	76%	70%	65%	60%	43%	65%	63%	68%	66%	62%	62%	54%	\$109	\$101	\$118	\$106
PERC	94	90	67	95	18	23	17	9	65	38	89	34	79	98	55	35	40	25	69	79	60	73
	Expe	cted Av	verage	Progen	y Value	s – USA	179607	722 x N	BNL35													
EBV	0.6	0.3	-3.7	5.1	64	110	143	129	17	2.3	-4.5	73	5.0	-1.9	-1.1	1.0	2.3	0.15	\$140	\$127	\$154	\$133
ACC	70%	56%	81%	88%	85%	84%	86%	78%	72%	77%	49%	75%	75%	77%	74%	71%	73%	61%	44%	42%	45%	45%

Purchased by:

\$

Lot 66 BEN NEVIS GERANIUM L63*

HBR 2	24/7/15	AMFU,CAFU,DDFU	NHFU,	ID NBNL63	MATING T	YPE AI
	REMITALL NIC	GHTHAWK 37N# HIS 21R#		TE MANIA BARTEL B VALE BARTEL E7 ^{PV}	219 ^{₽V}	L63 is a deep, soft cow wh and she is the stunning, na
ŀ	HENDERSON N	MISSIE 32'02#		EAGLEHAWK JEDDA B	32 ^{sv}	Beast Mode calf which is the bull sale averaging \$13,750 who sold to Ollera Station
I	E MANIA INI	FINITY 04 379 AB#		BEN NEVIS FRONTI	ER B88 ^{sv}	
BEN	NEVIS GERAI	NIUM G26 ^{sv}	BEN	NEVIS GERANIUM	G201#	
E	BEN NEVIS GI	ERANIUM E79#		BEN NEVIS GERANI	UM A84#	

L63 is a deep, soft cow who demonstrates the edge in type and constitution of the Judo's and she is the stunning, natural calf of Donor Lot 95 – J115. We are very excited for her Beast Mode calf which is the same combination that blew everyone away at our recent bull sale averaging \$13,750. L63 is a maternal sister to the \$15,000 Ben Nevis Narwhal who sold to Ollera Station in 2018.

Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
4.9	6.4	-2.1	2.4	45	85	109	77	20	2.2	-5.4	61	3.6	1.0	1.1	-0.4	1.8	0.69	ABI	DOM	GRN	GRS
54%	6 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 59% 58% 55% 54% 48% \$1															\$119	\$113	\$119	\$118		
32																49	42	58	42		
Expe	cted Av	erage l	Progen	y Value	s – NBN	M51 x	NBNL	53													
2.0	5.6	0.2	4.0	56	105	136	108	22	2.4	-5.8	78	4.1	-0.6	-0.6	-0.1	2.0	0.31	\$137	\$124	\$147	\$132
65%	52%	76%	85%	80%	77%	76%	70%	64%	70%	45%	67%	65%	68%	67%	64%	63%	55%	40%	39%	40%	41 %
	CEDir 4.9 54% 32 Expect 2.0	CEDir CEDtr 4.9 6.4 54% 42% 32 18 Expected Av 2.0 5.6	CEDir CEDir GL 4.9 6.4 -2.1 54% 42% 57% 32 18 85 Expected X-rage 2.0 5.6 0.2	CEDir CEDtr GL BW 4.9 6.4 -2.1 2.4 54% 42% 57% 74% 32 18 85 12 Expected Average Progen 2.0 5.6 0.2 4.0	CEDir CEDir GL BW 200 4.9 6.4 -2.1 2.4 45 54% 42% 57% 74% 66% 32 18 85 12 67 Expected Automation State 2.0 5.6 0.2 4.0 56	CEDir CEDtr GL BW 200 400 4.9 6.4 -2.1 2.4 45 85 54% 42% 57% 74% 66% 65% 32 18 85 12 67 54 Expected Average Progeny Values - NBN 2.0 5.6 0.2 4.0 56 105	CEDir CEDtr GL BW 200 400 600 4.9 6.4 -2.1 2.4 45 85 109 54% 42% 57% 74% 66% 65% 65% 32 18 85 12 67 54 60 Expected Average Progeny Values - NBVIS1 x 2.0 5.6 0.2 4.0 56 105 136	CEDir CEDtr GL BW 200 400 600 MCW 4.9 6.4 -2.1 2.4 45 85 109 77 54% 42% 57% 74% 66% 65% 65% 61% 32 18 85 12 67 54 60 87 Expected Average Progeny Values - NBVK51 x NBNL6 2.0 5.6 0.2 4.0 56 105 136 108	4.9 6.4 -2.1 2.4 45 85 109 77 20 54% 42% 57% 74% 66% 65% 65% 61% 60% 32 18 85 12 67 54 60 87 21 Expected Automation VALUES VIEWED VIEw	CEDir CEDtr GL BW 200 400 600 MCW Milk SS 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 54% 42% 57% 74% 66% 65% 61% 60% 54% 32 18 85 12 67 54 60 87 21 34 Expected Average Progeny Values - NBMU51 x NBML52 2.0 5.6 0.2 4.0 56 105 138 108 22 2.4	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 32 18 85 12 67 54 60 87 21 34 37 Expected Average Progeny Values - VBIVIST NBNL63 2.0 5.6 0.2 4.0 56 105 136 108 22 2.4 -5.8	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 32 18 85 12 67 54 60 87 21 34 37 64 Expected Automation of the property total and the property total	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 3.6 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 32 18 85 12 67 54 60 87 21 34 37 64 84 Expected Automation of the standard s	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 3.6 1.0 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 59% 32 18 85 12 67 54 60 87 21 34 37 64 84 17 Expected Automation of the property bulk VALUES VIEWED 2.0 5.6 0.2 4.0 56 105 136 108 22 2.4 -5.8 78 4.1 -0.6	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 3.6 1.0 1.1 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 59% 58% 32 18 85 12 67 54 60 87 21 34 37 64 84 17 13 Expected Automation of the product of the prod	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 3.6 1.0 1.1 -0.4 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 59% 58% 55% 32 18 85 12 67 54 60 87 21 34 37 64 84 17 13 85 Expected Automation of the property dependence of the propendence of the property dependence of the propendence	CEDir GL BW 200 400 600 MCW Mik SS DTC CWT EMA RIB P8 RBY IMF 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 3.6 1.0 1.1 -0.4 1.8 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 59% 58% 55% 54% 32 18 85 12 67 54 60 87 21 34 37 64 84 17 13 85 52 Expected Attriated Att	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFLF 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 3.6 1.0 1.1 -0.4 1.8 0.69 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 58% 55% 54% 48% 32 18 85 12 67 54 60 87 21 34 37 64 84 17 13 85 52 96 Expected Automation of the interval of th	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F SS 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 3.6 1.0 1.1 -0.4 1.8 0.69 ABI 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 59% 55% 54% 48% \$119 32 18 85 12 67 54 60 87 21 34 37 64 84 17 13 85 52 96 49 Expected Automation of the intermation of the	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFLF Selector 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 3.6 1.0 1.1 -0.4 1.8 0.69 ABI DOM 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 59% 58% 55% 54% 48% \$119 \$113 32 18 85 12 67 54 60 87 21 34 37 64 84 17 13 85 52 96 49 42 Expected Automation of the colspan="4">Interview State St	CEDir GL BW 200 400 600 MCW Mik SS DTC CWT EMA FIB P8 RBY IMF NFLF CELot: Interestion 4.9 6.4 -2.1 2.4 45 85 109 77 20 2.2 -5.4 61 3.6 1.0 1.1 -0.4 1.8 0.69 ABI DOM GRN 54% 42% 57% 74% 66% 65% 61% 60% 54% 36% 57% 56% 58% 55% 54% 48% \$119 \$113 \$119 32 18 85 12 67 54 60 87 21 34 37 64 84 17 13 85 52 96 49 42 58 Expected Automation 61.05 136 138 128 136 138 12 2.4 5.8 78 4.1 10.6 -0.6 -0.1 2.0 0.31 \$137 \$142 \$147 2.0 5.

Purchased by:

.....

LOT 65. BEN NEVIS DENMIST L35

LOT 66. BEN NEVIS GERANIUM L63

Lot 67 BEN NEVIS FLORINA L77*

HBR 7/8/15 AMFU,CA64%,DDFU,NHFU ID NBNL77 MATING TYPE Natural BON VIEW NEW DESIGN 1407* **BR MIDLAND**# L77 has a terrific traditional head and and is big volume cow with easy fleshing. Her joining will create a deep boded, easy doing calf with high IMF. She has lots of SITZ NEW DESIGN 458N# RAFF MIDLAND Z204PV market flexibiity. SITZ ELLUNAS ELITE 3308# RAFF DORIS W10# DALWHINNIE 458N JOHNO J55V **BEN NEVIS FLORINA F159#** PAPA EQUATOR 2928# **CRUSADER OF STERN AB#** DALWHINNIE 2928 FLOWER F3PV **BEN NEVIS FLORINA B47**# MILLAH MURRAH FLOWER C69sv **BEN NEVIS FLORINA Y79**#

	Septe	mber 2	2020 Tra	nsTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	o, Rump	, IMF)
tardama kepa Sala haladan	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	1.0	4.1	-3.5	4.6	39	73	91	78	11	1.6	-2.4	52	3.2	-1.1	-0.8	0.9	1.2	-0.16	ABI	DOM	GRN	GRS
ACC	52%	52% 43% 50% 74% 67% 66% 72% 65% 52% 53% 39% 57% 56% 61% 57% 56% 42% 5															\$89	\$98	\$85	\$93		
PERC	60																91	84	90	91		
	Expe	cted Av	verage l	Progen	y Value	s – NBI	M128	x NBNI	_77													
EBV	3.0	3.8	-4.7	3.8	42	76	99	88	13	2.0	-3.5	56	3.5	-0.5	0	-0.4	2.0	0.19	\$99	\$100	\$101	\$100
ACC	59%	49%	59%	80%	74%	74%	76%	70%	59%	63%	44%	65%	64%	69%	67%	64%	63%	52%	38%	35%	40%	39%

MATING TYPE AI

Purchased by:

\$

Lot 68 BEN NEVIS GERANIUM L84#

 HBR
 19/8/15
 AMFU,CA4%,DD2%,NHFU
 ID
 NBNL84

 LEACHMAN
 RIGHT TIME^{SV}
 EXAR
 EXPAND 1241*

 HYLINE RIGHT TIME 338*
 BEN NEVIS ZEXAR
 Z86^{PV}

 HYLINE PRIDE 265*
 BEN NEVIS JEAN X114*

 CHERYLTON STEWIE D19^{PV}
 BEN NEVIS GERANIUM B77*

N BAR PRIME TIME D806# SINCLAIR LADY 2P60 4465# IDEAL 4465 OF 6807 4286# BEN NEVIS ZEXAR Z86°^v BEN NEVIS JEAN X114# **BEN NEVIS GERANIUM B77#** FORRES NEW DESIGN U95# BEN NEVIS GERANIUM Z46# BEN NEVIS UTAH U101# A beautiful cow that combines softness and performance and is right in the pocket for our type. We love her head, her long spine and the softness of her skin and coat. My Dad would have loved this cow. Hindsight is a wonderful thing and with our extra investigation we should have flushed this cow and her dam B77 as we did her sister Lot 98 – J134. The latter is a Donor and dam of the \$28k BN Propogate This is an extremely exciting female line. See her stunning first bull on the web in progeny.

Septe	mber 2	020 Tra	InsTasn	nan Ang	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (E	MA, Rib	, Rump	, IMF)
CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
-2.6	-1.0	-4.1	6.0	49	91	109	90	11	2.8	-6.6	57	3.7	-1.2	1.1	0	2.7	0.07	ABI	DOM	GRN	GRS
61%	1% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 64% 69% 68% 64% 63% 54% \$															\$124	\$117	\$137	\$116		
80																38	29	34	47		
Expe	cted Av	erage I	Progen	y Value	s – NBI	NP412 x		84													
-3.7	-0.6	-4.6	6.2	51	93	118	111	12	2.2	-4.5	66	5.8	-1.9	-1.1	0.7	2.8	0.12	\$124	\$115	\$141	\$115
60%	52%	65%	75%	70%	70%	73%	69%	63%	62%	42%	64%	63%	67%	65%	63%	62%	54%	37%	35%	38%	38%
	CEDir -2.6 61% 80 Expect -3.7	CEDir CEDtr -2.6 -1.0 61% 52% 80 80 Expected Av -3.7 -0.6	CEDir CEDir GL -2.6 -1.0 -4.1 61% 52% 64% 80 80 55 Expected Average I -3.7 -0.6 -4.6	CEDir CEDtr GL BW -2.6 -1.0 -4.1 6.0 61% 52% 64% 78% 80 80 55 86 Expected Average Progeny -3.7 -0.6 -4.4 6.2	CEDir CEDtr GL BW 200 -2.6 -1.0 -4.1 6.0 49 61% 52% 64% 78% 72% 80 80 55 86 44 Expected Average Progeny Value -3.7 -0.6 -4.6 6.2 51	CEDir CEDtr GL BW 200 400 -2.6 -1.0 -4.1 6.0 49 91 61% 52% 64% 78% 72% 72% 80 80 55 86 44 33 Expected Average Progeny Values - NBN -3.7 -0.6 -4.6 6.2 51 93	CEDir CEDtr GL BW 200 400 600 -2.6 -1.0 -4.1 6.0 49 91 109 61% 52% 64% 78% 72% 72% 76% 80 80 55 86 44 33 59 Expected Average Progeny Values - NBNP412 × -3.7 -0.6 -4.6 6.2 51 93 118	CEDir CEDtr GL BW 200 400 600 MCW -2.6 -1.0 -4.1 6.0 49 91 109 90 61% 52% 64% 78% 72% 72% 76% 71% 80 80 55 86 44 33 59 65 Expected Average Progeny Values - NBNP412 x NBNL -3.7 -0.6 -4.6 6.2 51 93 118 111	-2.6 -1.0 -4.1 6.0 49 91 109 90 11 61% 52% 64% 78% 72% 72% 76% 71% 65% 80 80 55 86 44 33 59 65 90 Expected Average Progeny Values - NBNP412 x NBNL84 -3.7 -0.6 -4.6 6.2 51 93 118 111 12	CEDir CEDtr GL BW 200 400 600 MCW Milk SS -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 61% 52% 64% 78% 72% 76% 71% 65% 60% 80 80 55 86 44 33 59 65 90 14 Expected Average Progeny Values - NBNP412 x NBNL84 -3.7 -0.6 -4.6 6.2 51 93 118 111 12 2.2	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 80 80 55 86 44 33 59 65 90 14 18 Expected Average Progeny Values – NBNP412 × NBNL34 -3.7 -0.6 -4.6 6.2 51 93 118 111 12 2.2 -4.5	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 80 80 55 86 44 33 59 65 90 14 18 76 Expected Average Progeny Values - NBNP412 x NBNL84 -3.7 -0.6 -4.6 6.2 51 93 118 111 12 2.2 -4.5 66	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 3.7 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 64% 80 80 55 86 44 33 59 65 90 14 18 76 83 Expected Average Progeny Values - NBNP412 x NBNL84 -3.7 -0.6 -4.6 6.2 51 93 118 111 12 2.2 -4.5 66 5.8	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 3.7 -1.2 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 64% 69% 80 80 55 86 44 33 59 65 90 14 18 76 83 81 Expected Average Progeny Values - NBNP412 × NBNL34 -3.7 -0.6 -4.6 6.2 51 93 118 111 12 2.2 -4.5 66 5.8 -1.9	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 3.7 -1.2 1.1 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 64% 69% 68% 80 80 55 86 44 33 59 65 90 14 18 76 83 81 13 Expected Average Progeny Values - NBNP412 × NBNL8/ -3.7 -0.6 -4.6 6.2 51 93 118 111 12 2.2 -4.5 66 5.8 -1.9 -1.1	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 3.7 -1.2 1.1 0 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 64% 69% 68% 64% 80 80 55 86 44 33 59 65 90 14 18 76 83 81 13 72 Expected Average Progeny Values - NBNP412 × NBNL8 -3.7 -0.6 -4.6 6.2 51 93 118 111 12 2.2 -4.5 66 5.8 -1.9 -1.1 0.7	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 3.7 -1.2 1.1 0 2.7 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 64% 69% 68% 64% 63% 80 80 55 86 44 33 59 65 90 14 18 76 83 81 13 72 21 Expected Average Progeny Values - NBNP412 x NBNL84 -3.7 -0.6 -4.6 6.2 51 93 118 111 12 2.2 -4.5 66 5.8 -1.9 -1.1 0.7 2.8	CEDir GL BW 200 400 600 MCW Mik SS DTC CWT EMA RIB P8 RBY IMF NFI-F -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 3.7 -1.2 1.1 0 2.7 0.07 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 64% 69% 68% 64% 63% 54% 80 80 55 86 44 33 59 65 90 14 18 76 83 81 13 72 21 37 Expected Average Progeny Values - NBNP412 x NBNL84 UBL 11 12 2.2 -4.5 66 5.8 -1.9 -1.1 0.7 2.8 0.12	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFL-F SS -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 3.7 -1.2 1.1 0 2.7 0.07 ABI 61% 52% 64% 78% 72% 76% 71% 65% 60% 43% 65% 64% 69% 68% 64% 63% 54% \$124 80 80 55 86 44 33 59 65 90 14 18 76 83 81 13 72 21 37 38 Expected Average Progeny Values - NBNP412 × NBNL84 USA 66 5.8 -1.9 -1.1 0.7 2.8 0.12 \$124	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RiB P8 RBY IMF NFL-F Selection -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 3.7 -1.2 1.1 0 2.7 0.07 ABI DOM 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 64% 69% 68% 64% 63% 54% \$124 \$117 80 80 55 86 44 33 59 65 90 14 18 76 83 81 13 72 21 37 38 29 Expected Average Progeny Values - NBNP412 × NBNL8/ Image: State	CEDir GL BW 200 400 600 MCW Mik SS DTC CWT EMA RIB P8 RBY IMF NFLF Selection Indexed -2.6 -1.0 -4.1 6.0 49 91 109 90 11 2.8 -6.6 57 3.7 -1.2 1.1 0 2.7 0.07 ABI DOM GRN 61% 52% 64% 78% 72% 72% 76% 71% 65% 60% 43% 65% 64% 69% 68% 64% 63% 54% \$124 \$117 \$137 80 80 55 86 44 33 59 65 90 14 18 76 83 81 13 72 21 37 38 29 34 Expected Average Progeny Values - NBNP412 x NBNL84 Values - NBNP412 x NBNL84

Purchased by:

LOT 67. BEN NEVIS FLORINA L77

LOT 68. BEN NEVIS GERANIUM L84

Lot 69 BEN NEVIS LAURA L100*

AMFU,CA52%,DD4%,NHFU

LEACHMAN RIGHT TIME^{SV} HYLINE RIGHT TIME 338# HYLINE PRIDE 265# CHERYLTON STEWIE D19^{pv}

N BAR PRIME TIME D806#

IDEAL 4465 OF 6807 4286#

SINCLAIR LADY 2P60 4465#

10/8/15

HBR

EXAR EXPAND 1241[#] BEN NEVIS ZEXAR Z86[®] BEN NEVIS JEAN X114[#] **BEN NEVIS LAURA E104[#]** FORRES NEW DESIGN U95[#] BEN NEVIS LAURA Z37[#] BEN NEVIS LAURA U75[#]

ID NBNL100

We love the extra scale and performance that comes with this stunning cow. She is feminine and wedge shaped with a big rib and depth and softness. We have one beautiful retained heifer from her. Her joining to Exclusive is highly anticipated.

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	3.8																ABI	DOM	GRN	GRS		
ACC	59%	9% 50% 61% 77% 70% 70% 75% 70% 61% 59% 42% 63% 60% 64% 60% 60% 52% \$															\$111	\$111	\$121	\$106		
PERC	39																65	50	56	73		
	Expe	cted Av	verage I	Progen	y Value	s – USA	A181304	471 x N	BNL10	D												
EBV	5.7	4.0	-4	4.1	51	95	117	96	16	2.0	-3.5	68	5.1	-1.0	-0.8	0.5	2.3	0.17	\$124	\$122	\$133	\$121
ACC	64%	49%	78%	85%	74%	74%	76%	72%	66%	65%	38%	68%	64%	68%	63%	62%	63%	50%	37%	35%	38%	38%

MATING TYPE AI

Purchased by:

\$

Lot 70 BEN NEVIS JUNE L112*

HBR	10/8/15	AMFU,CA5%,DDFU,NHFU	ID NBNL112	MATING	TYPE AI
	LEACHMAN	RIGHT TIME ^{SV}	BANQUET ZEALFUL	Z021 ^{PV}	Another ca

HYLINE RIGHT TIME 338" HYLINE PRIDE 265" CHERYLTON STEWIE D19" N BAR PRIME TIME D806" SINCLAIR LADY 2P60 4465" IDEAL 4465 OF 6807 4286" BANQUET ZEALFUL Z021^{PV} BEN NEVIS DEL PEDRO D3^{SV} BEN NEVIS FLORYX U87# BEN NEVIS JUNE G91# BON VIEW NEW DESIGN 208^{SV} BEN NEVIS JUNE X145# BEN NEVIS JUNE X145# Another carbon copy of the last few Stewie cows – he really adds thump and doing ability but in a bigger package. We are so excited for the Beast Mode calf that comes from this joining – it is a no – branier for excellence is phenotype and arithmatic.

TACE	Septe	mber 2	2020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, \$	Scan (El	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	2.4	1.8	-4.2	3.6	45	85	110	91	20	2.7	-1.9	56	3.1	-1.5	0.1	0.7	2.1	0.16	ABI	DOM	GRN	GRS
ACC	59%															\$110	\$109	\$115	\$109			
PERC	50														67	56	63	66				
	Expe	cted Av	verage	Progen	y Value	s – USA	179607	722 x N	BNL11	2												
EBV	5.3	2.8	-4.1	3.5	59	105	134	112	20	2.6	-4.3	67	4.6	-1.4	-0.8	0.9	2.3	0.24	\$141	\$131	\$153	\$135
ACC	69%	56%	80%	88%	84%	84%	85%	78%	71%	77%	49%	74%	75%	77%	74%	71%	73%	61%	43%	42%	45%	45%

Purchased by:

.....

Ś

Lot 71 BEN NEVIS JEAN L115*

HBR 5/9/15 AMFU,CAFU,DDFU,NH3% ID NBNL115 MATING TYPE AI

CONNEALY CONSENSUS[#] CONNEALY CONSENSUS 7229^{sv} BLUE LILLY OF CONANGA 16[#] **CONNEALY COMRADE 1385[#]** G A R NEW DESIGN 5050[#] HAPPY GEE OF CONANGA 919[#] HAP GINA OF CONANGA 260 4965[#]

BANQUET ZEALFUL ZO21PV BEN NEVIS DEL PEDRO D3SV BEN NEVIS FLORYX U87# BEN NEVIS JEAN G117# BEN NEVIS XEROX X101PV BEN NEVIS JEAN B21# BEN NEVIS JEAN U74#

The "Genes in the Jean family are very strong" and this could well be the most exciting prospect in the sale. Her dam's maternal sister is none other than our most valued cow H215 and L115 takes those genetics one step further by adding extra thump and depth of rib whicle maintaining the X factor and proud front end. The volume and dimension of this cow needs to be seen to be believed. While Lot 63 had the best Spring calf in the drop, L115 had the hands-down best female calf and we are delighted to carry on her line with her.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	I					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (E	MA, Rib	, Rump	, IMF)
Constantian Array	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	9.9	6.7	-5.4	3.2	49	89	120	94	16	1.8	-1.5	63	6.7	-2.0	-2.4	1.6	1.7	0.23	ABI	DOM	GRN	GRS
ACC	57%															\$124	\$119	\$129	\$123			
PERC	5														38	23	44	29				
	Expe	cted Av	verage I	Progen	y Value	s – NBM	M128	x NBNL	.115													
EBV	7.5	Expected Average Progeny Values - NBNM128 x NBNL115 7.5 5.1 -5.6 3.1 47 84 114 96 15 2.1 -3.0 62 5.3 -1.0 -0.8 0 2.2 0.38 \$117													\$110	\$123	\$115					
ACC	61%	52%	64%	81%	75%	76%	78%	72%	63%	66%	43%	67%	66%	71%	68%	66%	65%	53%	39%	36%	41%	4 1 %

Purchased by:

\$

Lot 72 BEN NEVIS GERANIUM L229*

HBR	22/8/15	AMFU,CAFU,DDFU,NHFU	ID NBNL229	MATING TYPE ET

LEACHMAN RIGHT TIME^{SV} HYLINE RIGHT TIME 338* HYLINE PRIDE 265* CHERYLTON STEWIE D19^{PV} N BAR PRIME TIME D806* SINCLAIR LADY 2P60 4465* IDEAL 4465 OF 6807 4286* BANQUET MERLOT X135" BANQUET ZEALFUL Z021PV BANQUET DREAM X087" BEN NEVIS GERANIUM E127SV TC STOCKMAN 2164" BEN NEVIS GERANIUM T101# BEN NEVIS GERANIUM E40." L229 is the embryo calf of our big, powerful Geranium E127 cow. She has a lofty head carriage and a long, strong spine. Her maternal brothers averaged \$10,000 at auction and her joining to Fireball offers a very exciting Genetic combination.

Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
-4.7	-0.6	-2.1	5.5	44	81	104	97	13	1.8	-2.0	55	3.7	-1.3	0.7	0.2	1.9	0.09	ABI	DOM	GRN	GRS
61%														\$95	\$93	\$94					
88	78	85	78	73	68	71	52	80	53	91	83	83	83	19	64	48	40	89	89	85	90
Expe	cted Av	erage l	Progen	y Value	s – USA	186900	054 x N	BNL22	9												
1.3	2.6	-4.2	4.2	53	95	120	111	14	2.4	-4.0	67	8.2	-1.6	-0.4	1.1	2.8	0.04	\$136	\$125	\$152	\$128
55%	48%	61%	75%	71%	70%	69%	68%	67%	64%	39%	67%	64%	67%	61%	63%	63%	52%	36%	34%	37%	36%
	CEDir -4.7 61% 88 Exper 1.3	CEDir CEDtr -4.7 -0.6 61% 54% 88 78 Expected Av 1.3 2.6	CEDir CEDir GL -4.7 -0.6 -2.1 61% 54% 65% 88 78 85 Expected Average 1.3 2.6 -4.2	CEDir CEDtr GL BW -4.7 -0.6 -2.1 5.5 61% 54% 65% 76% 88 78 85 78 Expected Average Progen 1.3 2.6 -4.2 4.2	CEDir CEDtr GL BW 200 -4.7 -0.6 -2.1 5.5 44 61% 54% 65% 76% 69% 88 78 85 78 73 Expected Average Progeny Value 1.3 2.6 -4.2 4.2 53	CEDir CEDtr GL BW 200 400 -4.7 -0.6 -2.1 5.5 44 81 61% 54% 65% 76% 69% 68% 88 78 85 78 73 68 Expected Average Progeny Values – USA 1.3 2.6 -4.2 4.2 53 95	CEDir CEDtr GL BW 200 400 600 -4.7 -0.6 -2.1 5.5 44 81 104 61% 54% 65% 76% 69% 68% 69% 88 78 85 78 73 68 71 Expected Average Progeny Values - USA186900 1.3 2.6 -4.2 4.2 53 95 120	CEDir CEDtr GL BW 200 400 600 MCW -4.7 -0.6 -2.1 5.5 44 81 104 97 61% 54% 65% 76% 69% 68% 69% 67% 88 78 85 78 73 68 71 52 Expected Average Progeny Values – USA18690054 x N 1.3 2.6 -4.2 4.2 53 95 120 111	-4.7 -0.6 -2.1 5.5 44 81 104 97 13 61% 54% 65% 76% 69% 68% 69% 67% 65% 88 78 85 78 73 68 71 52 80 Expected Average Progeny Values - USA18690054 x NBNL228 1.3 2.6 -4.2 4.2 53 95 120 111 14	CEDir CEDtr GL BW 200 400 600 MCW Milk SS -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 88 78 85 78 73 68 71 52 80 53 Expected Average Progeny Values - USA18690054 x NBNL229 1.3 2.6 -4.2 4.2 53 95 120 111 14 2.4	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 88 78 85 78 73 68 71 52 80 53 91 Expected Average Progeny Values – USA18690054 x NBL229 1.3 2.6 -4.2 4.2 53 95 120 111 14 2.4 -4.0	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 88 78 85 78 73 68 71 52 80 53 91 83 Expected Average Progeny Values – USA18690054 x NBNL229 1.3 2.6 -4.2 4.2 53 95 120 111 14 2.4 -4.0 67	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 3.7 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 62% 88 78 85 78 73 68 71 52 80 53 91 83 83 Expected Average Progeny Values - USA18690054 x NBNL229 1.3 2.6 -4.2 4.2 53 95 120 111 14 2.4 -4.0 67 8.2	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 3.7 -1.3 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 66% 88 78 85 78 73 68 71 52 80 53 91 83 83 83 Expected Average Progeny Values - USA18690054 x NBNL229 1.3 2.6 -4.2 4.2 53 95 120 111 14 2.4 -4.0 67 8.2 -1.6	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 3.7 -1.3 0.7 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 62% 66% 63% 88 78 85 78 73 68 71 52 80 53 91 83 83 83 19 Expected Average Progeny Values - USA18690054 x NBL229 1.3 2.6 -4.2 4.2 53 95 120 111 14 2.4 -6.0 67 8.2 -1.6 -0.4	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 3.7 -1.3 0.7 0.2 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 62% 66% 63% 62% 88 78 85 78 73 68 71 52 80 53 91 83 83 83 19 64 Expected Average Progeny Values – USA18690054 x NBNL229 1.3 2.6 -4.2 4.2 53 95 120 111 14 2.4 -4.0 67 8.2 -1.6 -0.4 1.1	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 3.7 -1.3 0.7 0.2 1.9 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 62% 66% 63% 62% 62% 88 78 85 78 73 68 71 52 80 53 91 83 83 19 64 48 Expected Average Progeny Values – USA18690054 x NBNL229 VBNL229 VBNL2	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 3.7 -1.3 0.7 0.2 1.9 0.09 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 62% 66% 63% 62% 62% 56% 88 78 85 78 73 68 71 52 80 53 91 83 83 83 19 64 48 40 Expected Average Progeny Values – USA18690054 x NBNL229 1.3 2.6 -4.2 4.2 53 95 120 111 14 2.4 -4.0 67 8.2 -1.6 -0.4 1.1 2.8 0.04	CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F SS -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 3.7 -1.3 0.7 0.2 1.9 0.09 ABI 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 62% 66% 62% 62% 62% 56% \$93 88 78 85 78 73 68 71 52 80 53 91 83 83 19 64 48 40 89 Expected Average Progeny Values - USA18690054 x NBNL229 NBNL229 111 14 2.4 -4.0 67 8.2 -1.6 -0.4 1.1 2.8 0.04 \$136	CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F Selection -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 3.7 -1.3 0.7 0.2 1.9 0.09 ABI DOM 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 62% 66% 63% 62% 56% \$93 \$95 88 78 85 78 73 68 71 52 80 53 91 83 83 83 19 64 48 40 89 89 Expected Average Progeny Values – USA18690054 x NBNL229 IIII 14 2.4 -4.0 67 8.2 -1.6 -0.4 1.1 2.8 0.04 \$136 \$125	CEDir GL BW 200 400 600 MCW Mik SS DTC CWT EMA RIB P8 RBY IMF NFLF Selection Indexe -4.7 -0.6 -2.1 5.5 44 81 104 97 13 1.8 -2.0 55 3.7 -1.3 0.7 0.2 1.9 0.09 ABI DOM GRN 61% 54% 65% 76% 69% 68% 69% 67% 65% 63% 45% 65% 62% 66% 63% 62% 56% \$93 \$95 \$93 88 78 85 78 73 68 71 52 80 53 91 83 83 19 64 48 40 89 89 85 Expected Average Progeny Values – USA18690054 x NBNL229 440 67 8.2 -1.6 -0.4 1.1 2.8 0.04 \$136 \$125 \$152

Purchased by:

LOT 71. BEN NEVI JEAN L115

L115 with her calf earlier this year

Lot 73 BEN NEVIS JEAN L231*

HBR 20/8/15 AMFU,CAFU,DDFU,NHFU ID NBNL231 MATING TYPE ET CONNEALY CONSENSUS# J & C APPEAL A10PV This is a very special young cow who has Donor potential. We love her beautiful head and quality coat and natural thickness and she just oozes style. Jean L231 is a full ET CONNEALY CONSENSUS 7229sv RAFF EMPIRE E269sv sister to Jean L228 who sells as Lot 22 with her famous Donor dam selling at Lot 23. **BLUE LILLY OF CONANGA 16#** RAFF DORIS A55# She will transmit very sexy numbers and thumping calves to go with it. **CONNEALY COMRADE 1385# BEN NEVIS JEAN H103sv** G A R NEW DESIGN 5050* BEN NEVIS XEROX X101PV HAPPY GEE OF CONANGA 919# BEN NEVIS JEAN B16# HAP GINA OF CONANGA 260 4965* BEN NEVIS JEAN U32# TACE September 2020 TransTasman Angus Cattle Evaluation Traits observed: BWT, 600WT, Scan (EMA, Rib, Rump, IMF)

						•											· · ·	,			· · ·	/ /
Cale States	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	election	n Indexe	s
EBV	6.0	-1.0	-4.3	3.6	52	95	116	86	17	1.2	-2.4	67	7.2	-1.1	-0.7	1.4	1.0	-0.06	ABI	DOM	GRN	GRS
ACC	60%	51%	67%	77%	69%	68%	70%	67%	62%	61%	39%	61%	61%	62%	61%	59%	59%	47%	\$115	\$120	\$110	\$119
PERC	24	80	51	33	28	20	40	73	45	81	88	39	23	79	58	14	84	22	57	21	70	39
	Expe	cted Av	verage I	Progen	y Value	s – NBI	NP412 >		231													
EBV	0.7	-0.6	-4.7	5.0	53	95	121	109	15	1.4	-2.4	70	7.6	-1.9	-2.0	1.4	2.0	0.05	\$119	\$116	\$127	\$117
ACC	59%	52%	66%	74%	68%	68%	70%	67%	62%	62%	40%	62%	61%	63%	62%	60%	60%	50%	35%	33%	37%	36%

Purchased by:

\$

Lot 74 BEN NEVIS GERANIUM L234#

HBR	9/9/	15	AMFU	J,CA509	%,DDFU	,NHFU	ID	NBNL2	234	MAT	ING TY	PE ET	
	TC T	OTAL 4	10#				TE MA		ILIMITE	D U327 [.]	1#	Such a le	ovely de
Р	OSS TO	TAL IM	PACT 74	5#		TE	MANIA	INFINI	FY 04 3	79 AB#		great E4	
	POS	S BLACK	CAP 5116	5 #			TE MA	NIA 9510)2#			daughte	ers. This j
BEN N	IEVIS JE	THRO	J85 sv			BEN NE	EVIS GE	RANIUI	۹ F5 ^{sv}				
	BEN	NEVIS	BRUISEF	R B33sv			BEN N	VEVIS ZI	EXAR Z	36 ^{pv}			
В	EN NE	IS JEAN	I E31#			BE	N NEVI	S GERAI		62#			
	BEN	NEVIS	ROXY C	10#			BEN N	VEVIS G	eraniu	JM V52#			
TACE	Septe	ember 2	2020 Tra	ansTasr	nan An	gus Ca	ttle Eva	aluation	I				
fundamente anti-	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA

Such a lovely deep, broody cow and has a delightful nature. She descends back to the great E40 and is an embryo calf of our much loved old donor F5. We have retained two daughters. This joining will be special.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
CAN SHORE	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-3.1	0.8	-2.1	5.3	52	93	122	112	12	2.3	-4.7	71	3.7	-0.9	-0.9	-0.1	2.0	0.15	ABI	DOM	GRN	GRS
ACC	55%													\$113	\$105	\$121	\$110					
PERC	82														61	69	56	64				
	Expe	cted Av	erage l	Progen	y Value	s – NBI	M51 x	NBNL2	234													
EBV	-2.1	2.8	0.2	5.4	60	109	142	125	17	2.4	-5.5	84	4.2	-1.5	-1.6	0.1	2.1	0.04	\$134	\$120	\$148	\$128
ACC	66%	53%	77%	87%	79%	76%	76%	71%	61%	73%	46%	67%	65%	67%	66%	64%	63%	54%	40%	39%	41%	4 1 %

Purchased by:

.....

LOT 73. BEN NEVIS JEAN L231

LOT 75. BEN NEVIS JEAN K2

Lot 75 BEN NEVIS JEAN K2^{sv}

7/7/14 AMFU,CAFU,DD5%,NHFU ID NBNK2 N

MATING TYPE AI

B/R NEW DESIGN 036[#] TE MANIA UNLIMITED U3271[#] RAI TE MANIA LOWAN R426+96[#] **TE MANIA INFINITY 04 379 AB**[#] BEN NE[#] TE MANIA PRINCE 153-93[#] TE MANIA 95102[#] BEN TE MANIA 92F006 AB[#]

RAFF EMPIRE E2695V RAFF DORIS A55# BEN NEVIS JEAN H93# CRUSADER OF STERN AB# BEN NEVIS JEAN B57# BEN NEVIS JEAN Y12#

J & C APPEAL A10PV

We adore this Donor Cow. She is the dam of M88 whose first son sold to Young Pastoral for \$14,000 in 2019. As a breed in general we are in danger of losing what our cows are famous for as some carcase lines gets shellier and shellier. But not this cow – she is unique. Jean K2 represents everything we are striving to achieve in having the constitution the breed is known for but with added carcase merit under the hide. She is a hoofa in the flesh while maintaining feminity up front. This is a dymnamite of a cow and has flushed exceedingly well for us. Her sister N55 has also joined the donor program and dam sells as Lot 105 – H93, we have a stonker of a bull calf by Beast Mode for next years sale and many embryos in utero.

TACE	Septe	mber 2	020 Tra	InsTasr	nan Ang	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, S	Scan (E	MA, Rib	, Rump	, IMF)
Cale Cale	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	4.9	-6.0	-2.6	2.2	41	82	104	102	16	1.7	-3.7	53	2.4	0.4	0.6	-1.0	1.6	0.53	ABI	DOM	GRN	GRS
ACC	64%															\$92	\$94	\$89	\$94			
PERC	32															89	90	88	90			
	Expe	cted Av	erage I	Progen	y Value	s – NBM	M128		(2													
EBV	5.0	-1.3	-4.2	2.6	43	81	106	100	15	2.1	-4.1	57	3.1	0.3	0.7	-1.3	2.2	0.53	\$101	\$98	\$103	\$100
ACC	65%	58%	67%	81%	76%	76%	78%	73%	65%	69%	52%	70%	68%	72%	70%	68%	68%	60%	42%	38%	44%	43%

Purchased by:

HBR

HBR

\$

Lot 76 BEN NEVIS GERANIUM K10#

11/7/14 AMFU,CA50%,DDFU,NHFU **ID** NBNK10

MATING TYPE AI

CONNEALY CONSENSUS# CONNEALY CONSENSUS 7229⁵⁷ BLUE LILLY OF CONANGA 16[#] **CONNEALY COMRADE 1385#** G A R NEW DESIGN 5050# HAPPY GEE OF CONANGA 919# HAP GINA OF CONANGA 260 4965#

BEN NEVIS DINO F6^{sv} BEN NEVIS JEAN D114* BEN NEVIS GERANIUM H168* HYLINE RIGHT WAY 781* BEN NEVIS GERANIUM C35* BEN NEVIS GERANIUM V29*

TE MANIA INFINITY 04 379 AB*

Geranium K10 already has two beautiful daughters retained by us and she is one of six daughters of H168 – all retained by us. So depending on whether you believe in probability or the universe you are nearly bound to get a bull calf by P412 but that's probably why I failed Econometrics at University. She has a beautiful fine skin and coat and is very long and thick quartered.

TACE	Septe	mber 2	020 Tra	InsTasn	nan Ang	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (E	MA, Rib	, Rump	, IMF)
Television for	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	8.0	4.6	-5.7	2.2	46	85	104	77	15	1.6	-4.0	57	6.6	-0.1	-0.3	0.6	1.7	0.47	ABI	DOM	GRN	GRS
ACC	58%	49%	61%	77%	72%	72%	76%	71%	63%	58%	39%	63%	63%	69%	67%	63%	62%	45%	\$117	\$117	\$117	\$117
PERC	13	33	28	10	61	55	72	86	67	63	65	76	32	47	46	45	56	85	53	29	61	45
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NP412 >		10													
EBV	1.7	2.2	-5.4	4.3	50	90	115	105	13	1.6	-3.2	66	7.3	-1.4	-1.8	1.0	2.3	0.32	\$120	\$115	\$131	\$116
ACC	58%	51%	63%	74%	70%	70%	73%	69%	62%	61%	40%	63%	62%	67%	65%	62%	62%	49%	36%	33%	37%	37%

Purchased by:

Lot 77 BEN NEVIS DORMIST K16*

HBR 13/7/14 AMFU,

AMFU,CAFU,DDFU,NHFU ID NBNK16

MATING TYPE Natural

B/R NEW DIMENSION 7127^{sv} TE MANIA BARTEL B219^{pv} TE MANIA JEDDA W85* **AYRVALE BARTEL E7**^{pv} MYTTY IN FOCUS* EAGLEHAWK JEDDA B32^{sv} EAGLEHAWK JEDDA Z48*

TE MANIA UNLIMITED U3271" TE MANIA INFINITY 04 379 AB" TE MANIA 95102" BEN NEVIS DORMIST H26" BEN NEVIS AROD A975V BEN NEVIS DORMIST F157" BEN NEVIS DORMIST F157" Dormist K16 is the maternal sister to the \$40,000 Ben Nevis Quantico who sold to Bowmont in our recent bull sale. Her stunning dam sells as Lot 102. She begins this run of three very special cows that are what we call geneticals. The Bartel x Infinity combination has been a gold mine for combining old fashioned quality with modern carcase to target relevant and premium markets. It has given us no less than eight donors in the last three years and K16 has potential donor written all over her. She is a big volume, strong topped, slick skin cow with a beautiful head and neck extension.

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	9.5	8.0	-4.4	1.9	46	86	114	80	21	2.3	-7.4	63	4.8	-0.5	0.8	-0.3	1.8	0.22	ABI	DOM	GRN	GRS
ACC	64%															\$118	\$136	\$128				
PERC	7	7 8 49 7 63 50 46 83 14 29 9 53 65 61 18 82 52 57 23 26														26	35	18				
	Expe	cted Av	verage I	Progen	y Value	s – USA	179607	722 x N	BNK16													
EBV	8.9	5.9	-4.2	2.6	60	106	136	106	20	2.4	-7.0	71	5.4	-0.9	-0.4	0.4	2.2	0.27	\$152	\$135	\$163	\$144
ACC	72%	60%	81%	89%	85%	85%	86%	79%	73%	78%	55%	76%	76%	79%	76%	73%	75%	64%	46%	43%	48%	47%

Purchased by:

\$

\$

\$

Lot 78 BEN NEVIS KIWI K17*

HBR	13/7/14	AMFU,CAFU,DD2%,NHFU	ID NBNK17	MATING TYPE Natural

B/R NEW DIMENSION 7127^{sv} TE MANIA BARTEL B219^{pv} TE MANIA JEDDA W85[#] **AYRVALE BARTEL E7^{pv}** MYTTY IN FOCUS[#] EAGLEHAWK JEDDA B32^{sv} EAGLEHAWK JEDDA Z48[#] TE MANIA UNLIMITED U3271# TE MANIA INFINITY 04 379 AB# TE MANIA 95102# BEN NEVIS KIWI H42# BEN NEVIS FRONTIER B885V BEN NEVIS KIWI F111# BEN NEVIS KIWI Z70#

You can't help but love this cow with her supermodel front end and all business back end. She has the best Autumn drop bull calf for next years sale with her first bull calf selling for \$11,000 to Ian and Noella Spicer in 2017. Her maternal brother Ben Nevis Quambone recently sold to Bowenfells Angus in Qld for \$16,000 and will used by us as a Stud Sire also. Again we should have flushed this cow and she has potential donor written all over her. See her absolute thumper of a dam in Lot 45.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	election	n Indexe	es
EBV	6.7	7.4	-4.8	3.1	48	89	117	88	22	2.2	-5.5	71	6.9	-0.4	0.2	-0.1	2.6	0.62	ABI	DOM	GRN	GRS
ACC	64%	44% 60% 68% 77% 72% 72% 76% 71% 65% 67% 55% 67% 66% 70% 69% 67% 65% 61% \$136															\$136	\$121	\$147	\$129		
PERC	20	11	42	22	48	38	37	70	11	34	35	24	28	57	31	76	23	94	17	18	22	16
	Expe	cted Av	erage l	Progen	y Value	s – USA	A181304	171 x N	BNK17													
EBV	7.2	6.8	-4.1	3.8	56	102	128	100	19	2.2	-3.9	78	7.0	0.3	0.1	-0.2	2.5	0.46	\$137	\$127	\$146	\$133
ACC	66%	54%	81%	85%	75%	75%	76%	73%	68%	69%	45%	70%	67%	70%	65%	66%	65%	54%	40%	36%	4 1 %	40%

Purchased by:

.....

Lot 79 BEN NEVIS GERANIUM K18*

HBR	13/7/14	AMFU,CA1%,DDFU,NHFU	ID NBNK18	MATING	TYPE Natural
	B/R NEW D	MENSION 7127sv	τε μανία μνι μπιτ	FD U3271#	Super Donor

TE MANIA BARTEL B219^{PV} TE MANIA JEDDA W85[#] **AYRVALE BARTEL E7^{PV}** MYTTY IN FOCUS[#] EAGLEHAWK JEDDA B32^{SV} EAGLEHAWK JEDDA Z48[#] TE MANIA UNLIMITED U3271[#] TE MANIA INFINITY 04 379 AB[#] TE MANIA 95102[#] BEN NEVIS GERANIUM H84[#] BEN NEVIS ZEXAR Z86[#] BEN NEVIS GERANIUM B77[#] BEN NEVIS GERANIUM Z46[#] Super Donor K18 is potent at transmitting excellence into her progeny and is an absolute workhorse in the embryo department. Her \$ Indexes are mind blowing and she transmits this along with an X factor into her progeny with her son Napolean N214 selling to Sam Pentillo in 2018 for \$18,000 and a second son Ben Nevis Porsche P186 selling in 2019 to Injemira Genetics for stud duties for \$11,000. Her dam Lot 68 is a maternal sister to Lot 98 the dam of the \$28,000 Propogate P37. This is a unique opportunity to tap directly into our breeding program and we can't wait to see how her expectant Paratrooper calf turns out.

IACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	l					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Territorian Acade	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	*S
EBV	3.5	3.0	-3.5	4.6	50	91	119	96	17	3.0	-8.2	69	6.4	-2.7	-1.4	1.1	2.7	0.64	ABI	DOM	GRN	GRS
ACC	64%																\$149	\$129	\$170	\$136		
PERC	42	48	65	58	35	32	34	53	42	10	4	31	36	99	77	23	21	95	5	5	6	7
	Expe	cted Av	verage I	Progen	y Value	s – NM	MP15 x	NBNK	18													
EBV	6.2	7.4	-5.7	3.8	52	97	124	101	21	3.0	-7.0	73	6.4	-1.1	-0.3	0.5	2.7	0.45	\$148	\$131	\$165	\$138
ACC	64%	54%	81%	83%	73%	73%	74%	71%	62%	64%	47%	65%	63%	67%	65%	63%	62%	56%	39%	36%	40%	39%

Purchased by:

Lot 80 BEN NEVIS JEAN K24*

HBR 20/7/14 AMFU,CAFU,DDFU,NH6% ID NBNK24 MATING TYPE AI

CONNEALY CONSENSUS# CONNEALY CONSENSUS 7229^{sv} BLUE LILLY OF CONANGA 16# **CONNEALY COMRADE 1385#** G A R NEW DESIGN 5050# HAPPY GEE OF CONANGA 919# HAP GINA OF CONANGA 260 4965#

J & C APPEAL A10^{PV} RAFF EMPIRE E269^{SV} RAFF DORIS A55[#] **BEN NEVIS JEAN H100**[#] BEN NEVIS XEROX X101^{PV} BEN NEVIS JEAN A36 A37[#] BEN NEVIS JEAN U46[#] Jean K24's granddaughter was the standout of the P heifers and she has two further retained daughters by us. She is a larger framed cow with huge capacity and a feminine front end. She has lovely fine skin and her joining to Prospector P412 should be excellent and unique.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	I					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
A.X.	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	7.0	-0.7	-3.7	3.7	45	81	105	89	16	1.3	-1.6	60	5.5	-2.1	-2.8	1.9	1.3	0.16	ABI	DOM	GRN	GRS
ACC	59%	50%	67%	73%	71%	71%	76%	70%	64%	61%	39%	63%	63%	68%	66%	62%	62%	46%	\$103	\$108	\$103	\$105
PERC	18	78	62	35	66	69	69	68	55	77	94	67	52	95	96	6	74	49	78	60	77	75
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NP412 >		24													
EBV	1.2	-0.5	-4.4	5.1	50	88	116	111	14	1.4	-2.0	67	6.7	-2.4	-3.0	1.7	2.1	0.16	\$113	\$110	\$124	\$110
ACC	59%	51%	66%	72%	69%	69%	73%	68%	63%	62%	40%	63%	62%	66%	64%	62%	62%	50%	36%	33%	37%	37%

Purchased by:

\$

Lot 81 BEN NEVIS DORMIST K59*

HBR 1/8/14 AMFU,CAFU,DDFU,NHFU ID NBNK59 M/

MATING TYPE AI

CONNEALY CONSENSUS* CONNEALY CONSENSUS 7229^{sy} BLUE LILLY OF CONANGA 16* **CONNEALY COMRADE 1385*** G A R NEW DESIGN 5050* HAPPY GEE OF CONANGA 919* HAP GINA OF CONANGA 260 4965*

RAFF EMPIRE E269^{sv} RAFF DORIS A55[#] BEN NEVIS DORMIST H97# EXAR EXPAND 1241[#] BEN NEVIS DORMIST Z130[#] BEN NEVIS DORMIST W004[#]

J & C APPEAL A10PV

Dormist K59 transmits well above average IMF in her progenys' scans. Her first daughter M115 was the dam of the \$30,000 Ben Nevis Prime who sold to Bannaby in 2019. K59 oozes real quality, she is deep, easy fleshing and very kind in nature. Her joining to Metmorphic will be one of the most anticipated in this sale.

	Septe	mber 2	020 Tra	InsTasn	nan Ang	gus Ca	ttle Eva	luation						Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
transformar Angus Calife Francelon	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	\$S
EBV	8.7	0.3	-3.3	3.1	46	82	108	85	13	1.3	-3.1	57	5.5	-1.3	-0.8	0.8	1.7	0.16	ABI	DOM	GRN	GRS
ACC	60%	0% 51% 68% 75% 72% 72% 77% 71% 67% 61% 40% 65% 64% 70% 68% 64% 63% 47% \$113 \$11															\$111	\$115	\$113			
PERC	10																50	63	56			
	Expe	cted Av	erage l	Progen	y Value	s – NBI	M51 x	NBNK	59													
EBV	3.9	2.5	-0.5	4.3	57	104	136	112	18	1.9	-4.7	76	5.1	-1.7	-1.5	0.6	2.0	0.04	\$134	\$123	\$145	\$130
ACC	68%	56%	81%	86%	83%	81%	82%	75%	68%	74%	47%	71%	69%	74%	72%	69%	68%	55%	43%	41%	43%	44%

Purchased by:

\$

LOT 79. BEN NEVIS GERANIUM K18

Over 70 years 🛕

Lot 82 BEN NEVIS GERANIUM K62*

HBR	2/8/	14	AMFL	J,CAFU,	DDFU,N	H4%	ID	NBNK	52	MAT	ING TY	PE Natu	ural									
	TE M	ANIA U	NLIMIT	ED U32	71#		MYTT	Y IN FO	CUS#									g to bree				
Т	e mani	A INFIN	ITY 04 3	379 AB#		BE	N NEVI	S ERITRI	EA E6sv								ough her	hip. Her	r Podium	n calf wil	l transm	nit even
	TE M	ANIA 95	102#				BEN N	EVIS DO	RMIST C	46#		more th	ICKNESS a	and style	e than tr	IIS.						
BEN N	EVIS G	AMEMA	KER G5	56 ^{PV}		BEN NE	VIS GE	RANIU	4 G160	#												
	BAN	QUET Z	EALFUL	Z021 ^{PV}			BEN N	IEVIS XE	ROX X	101 ^{pv}												
В	EN NEV	IS GER/	NIUM	E127 ^{sv}		BE	N NEVI	S ROXY	C85#													
	BEN	NEVIS (GERANI	UM T10	1#		BEN N	IEVIS SU	JE U55#													
TACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	I			-		Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	СМТ	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	4.1	-1.0	-2.4	3.4	38	68	86	70	15	1.7	-3.0	45	5.0	-0.3	1.1	0.1	1.3	0.55	ABI	DOM	GRN	GRS
ACC	53%	44%	51%	76%	69%	69%	74%	67%	59%	52%	38%	59%	59%	66%	64%	59%	58%	45%	\$87	\$94	\$77	\$92
PERC	37	80	81	28	94	96	96	93	66	58	81	97	62	54	13	68	74	90	93	90	94	92
	Expe	cted Av	erage l	Progen	y Value	s – NBN	NP242 >		62													

-5.4

40%

62

61%

3.3

57%

7.5

60%

-1.0

66%

-0.1

63%

1.1

61%

Purchased by:

4.3

55%

2.4

47%

-4.5

58%

EBV

ACC

\$

0.56

49%

\$126 \$119

33%

35%

\$133 \$122

36%

37%

2.0

59%

Lot 83 BEN NEVIS GERANIUM K70*

3.5

75%

46

85

69% 69%

109

87

71% 66% 59%

HBR	5/8/	14	AMF	J,CAFU,	DDFU,N	HFU	ID	NBNK	70	MAT	ING TY	PE AI										
	BON		NEW DE	SIGN 2	08 ^{sv}		B/R N	EW DES	GIGN 03	6#		Geraniu	ıms K70'	s first ca	alf Monu	ment M	78 sold f	or \$10,0	000 in 20	017 BA a	nd SJ Ry	an. Like
T	C ΤΟΤΑ	L 410#				B/	RNEW	FRONTI	ER 095#	ŧ				0	s she is a							
	TC EF	RICA EILE	EN 204	7#			WHITE	FENCE	PRIDE H	1#			e joining genetic n		pector P	412 will	add ano	ther laye	er of qua	lity and	depth of	flank
POSS	TOTAL	ІМРАСТ	745#		l	BEN NE	VIS GE	RANIUI	M B46#			to this g	Serietici	iap.								
	CON	INEALY	LEAD O	N#			BEN N	IEVIS V	NDICA	FE V050)#											
P	OSS BL	ACKCAF	9 5116#			BE	N NEVI	S GERA	NIUM X	87#												
	POS	S BLACK	CAP 20)5#			BEN N	IEVIS G	ERANIU	M S121	#											
TACE	Septe	mber 2	2020 Tra	ansTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
Testane Asso	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-1.5	5.4	-1.3	4.2	41	67	85	83	7	1.3	-4.3	49	6.1	-1.5	-2.5	1.1	1.7	-0.06	ABI	DOM	GRN	GRS
ACC	63%	54%	65%	80%	75%	75%	78%	73%	70%	65%	49%	67%	66%	71%	70%	66%	65%	54%	\$91	\$96	\$93	\$90

21

franksing kepat	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	-1.5	5.4	-1.3	4.2	41	67	85	83	7	1.3	-4.3	49	6.1	-1.5	-2.5	1.1	1.7	-0.06	ABI	DOM	GRN	GRS
ACC	63%	54%	65%	80%	75%	75%	78%	73%	70%	65%	49%	67%	66%	71%	70%	66%	65%	54%	\$91	\$96	\$93	\$90
PERC	75	26	91	48	84	96	96	79	99	77	59	93	41	87	94	23	56	22	90	87	85	93
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NP412 >	NBNK	70													
EBV	-3.1	2.6	-3.2	5.3	48	81	106	108	10	1.4	-3.3	62	7.0	-2.1	-2.9	1.3	2.3	0.05	\$107	\$104	\$119	\$102
ACC	61%	53%	65%	76%	71%	71%	74%	70%	66%	64%	45%	65%	64%	68%	66%	64%	63%	54%	38%	36%	39%	39%

Purchased by:

.....

\$

\$

Lot 84 BEN NEVIS KIWI K81*

HBR	7/8/14	AMFU,CAFU,DDFU,N	HFU ID NBNK81	MATING 1	TYPE Natural
			VERMILION DATELINE J & C APPEAL A10 [™] J & C MISS CHEYENNE V BEN NEVIS KIWI G64#		A larger framed cow with volume and capacity through her rib and rump while being longer. Her joining to Metamorphic builds on this adding extra performance while building on her style.
В	EN NEVIS GEF	ZEALFUL Z021 ^{9V} RANIUM E127 ^{5V} GERANIUM T101#	VERMILION YELLOWS BEN NEVIS KIWI B54* BEN NEVIS KIWI U108		

TACE	Septe	mber 2	020 Tra	nsTasn	nan An	gus Ca	ttle Eva	luation	1					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
alera har	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	election	Indexe	s
EBV	-8.2	-8.0	-1.5	6.5	45	82	105	101	8	2.6	-2.0	62	2.6	-2.1	-1.3	0.8	1.8	0.17	ABI	DOM	GRN	GRS
ACC	55% 46% 51% 77% 70% 70% 74% 68% 60% 52% 39% 60% 66% 64% 60% 58% 45%															\$84	\$89	\$87	\$84			
PERC	96	99	90	92	69	67	68	43	99	19	91	57	93	95	75	35	52	50	94	94	89	96
	Expe	cted Av	erage l	Progen	y Value	s – NBM	NM51 x	NBNK	B1													
EBV	-4.6	-1.7	0.5	6.0	56	103	134	120	15	2.6	-4.1	79	3.6	-2.1	-1.8	0.6	2.0	0.05	\$120	\$112	\$131	\$115
ACC	66%	54%	73%	87%	82%	80%	81%	74%	64%	69%	46%	69%	67%	72%	70%	67%	65%	54%	41%	40%	42%	43%

Purchased by:

Lot 85 BEN NEVIS WILCOOLA K94#

HBR 16/8/14 AM

AMFU,CAFU,DD2%,NHFU ID NBNK94

MATING TYPE Natural

S A V FINAL ANSWER 0035" HARB PENDLETON 765 J H^{SV} H A R B BLACK LADY 375 J H" **BEN NEVIS FRONTROW F41**^{SV} BALDRIDGE NEBRASKA 901^{SV} BEN NEVIS PERFECTION A103" BEN NEVIS PERFECTION Y47"

ARDROSSAN ADMIRAL A2^{PV} BANQUET DANDY D274^{PV} BANQUET DREAM V104# BEN NEVIS WILCOOLA G4# BEN NEVIS XEROX X101^{PV} LONGFORD WILCOOLA C14# VERMONT WILCOOLA Z334# K94 again is a larger frame cow that is very feminine and productive. She is one of only two highely valued outside lines we have folded into our closed herd in the Wilcoola family. Her first calf Manchester excelled in his performance and genomics and sold to Knowla for \$16,000 in 2017. Her maternal sister is our Donor dam Lot 4 whose son is our Stud Sire Prospector P412, her dam is one of our favourite cows and sells as Lot 110 with her maternal brother sold in 2019 for stud duties to Banquet.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (E	MA, Rib	, Rump	, IMF)
200 Calendaria	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	3.2	3.5	-4.0	4.9	53	93	134	118	15	0.5	-1.0	70	4.7	-1.5	-2.7	1.0	1.5	-0.18	ABI	DOM	GRN	GRS
ACC	57% 45% 53% 79% 73% 76% 69% 57% 61% 36% 62% 61% 67% 65% 61% 59% 44% \$119 \$109															\$124	\$119					
PERC	44	43	56	65	22	24	9	16	63	96	96	26	67	87	95	27	65	12	49	56	51	39
	Expe	cted Av	erage I	Progen	y Value	s – NBI	NP412 >		94													
EBV	-0.8	1.7	-4.5	5.7	53	94	130	125	14	1.0	-1.7	72	6.3	-2.1	-3.0	1.2	2.2	-0.01	\$121	\$111	\$134	\$117
ACC	58%	49%	59%	75%	70%	70%	73%	68%	59%	62%	38%	63%	61%	66%	64%	61%	60%	49%	35%	33%	36%	37%

Purchased by:

\$

Lot 86 BEN NEVIS DORMIST K103#

 HBR
 22/8/14
 AMFU,CA2%,DDFU,NHFU
 ID
 NBNK103
 MATING TYPE
 AI

 TE
 MANIA UNLIMITED
 U3271#
 EXAR
 EXAR
 EXAR
 EXAR
 EXAR
 EXAR
 Ben N

 HIGHLANDER OF STERN AB#
 BEN NEVIS ZEXAR
 Z86**
 Ben N
 Som

STERN 2664# BRAVEHEART OF STERN^{sv} STERN 947# STERN 3886# STERN 1486# EXAR EXPAND 1241* BEN NEVIS ZEXAR Z86^{pv} BEN NEVIS JEAN X114* BEN NEVIS DORMIST D48* BON VIEW NEW DESIGN 208^{sv} BEN NEVIS DORMIST X141* BEN NEVIS DORMIST N56+93* Simply a divine cow in balance, type and skin and a pleasure to be around. Her first calf Ben Nevis Mission M55 was a standout selling for \$18,000 to BA and SJ Ryan. She offers so much flexibility and her current joining to the larger framed \$30,000 Ben Nevis Prime should put her calf right in the pocket phenotypically and genetically. You will love this cow.

CEDtr	GL	BW	200	September 2020 TransTasman Angus Cattle Evaluation Traits observed: BWT, 600WT, Scan (E CEDir CEDir GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F State																
														RBY	IMF	NFI-F	S	electior	n Indexe	s
															1.3	0.22	ABI	DOM	GRN	GRS
33% 55% 65% 79% 74% 77% 72% 68% 65% 49% 67% 65% 70% 69% 65% 64% \$106															\$106	\$104	\$109	\$105		
81	25	76	84	78	68	65	60	16	78	92	46	87	83	8	74	57	74	72	71	75
ted Av	erage F	Progeny	y Value	s – NBN	NP122 >		103													
2.1	-3.7	4.3	50	89	119	93	17	2.7	-5.4	58	5.4	-0.4	0.3	0.4	2.4	0.45	\$133	\$119	\$144	\$127
52%	65%	77%	71%	72%	73%	68%	62%	64%	44%	64%	62%	67%	65%	62%	62%	52%	38%	35%	39%	38%
:1	55% 81 ted Av 2.1	55% 65% 81 25 ted Average I -3.7	65% 65% 79% 81 25 76 ded Average Progeny 2.1 -3.7 4.3	61 67 79% 74% 81 25 76 84 ed Average Progeny Value 2.1 -3.7 4.3 50	55% 65% 79% 74% 74% 81 25 76 84 78 ted Average Progeny Values - NBN 2.1 -3.7 4.3 50 89	55% 65% 79% 74% 74% 77% 81 25 76 84 78 68 ted Average Progeny Values - NBNP122 x 2.1 -3.7 4.3 50 89 119	55% 65% 79% 74% 74% 77% 72% 81 25 76 84 78 68 65 ted Average Progeny Values – NBNP122 x NBNK 2.1 -3.7 4.3 50 89 119 93	65% 65% 79% 74% 74% 77% 72% 68% 81 25 76 84 78 68 65 60 ted Average Progeny Values – NBNP122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17	55% 65% 79% 74% 74% 77% 72% 68% 65% 81 25 76 84 78 68 65 60 16 ted Average Progeny Values - NBNP122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17 2.7	Construction Construction<	Company Company <t< th=""><th>Construction Construction Construction<</th><th>ctc ctc <thcc< th=""> <thcc< th=""> <thcc< th=""></thcc<></thcc<></thcc<></th><th>1 1</th><th>Constraint Constraint Constra</th><th>1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<></th><th>65% 65% 79% 74% 77% 72% 68% 65% 49% 67% 65% 70% 69% 65% 64% 54% 81 25 76 84 78 68 65 60 16 78 92 46 87 83 8 74 57 ted Average Progeny Values - NBNP122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17 2.7 -5.4 58 5.4 -0.4 0.3 0.4 2.4 0.45</th><th>65% 65% 79% 74% 74% 77% 72% 68% 65% 49% 67% 65% 70% 69% 65% 64% 54% \$106 81 25 76 84 78 68 65 60 16 78 92 46 87 83 8 74 57 74 ted Average Progeny Values - NBNP122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17 2.7 -5.4 58 5.4 -0.4 0.3 0.4 2.4 0.45 \$133</th><th>65% 65% 79% 74% 74% 77% 72% 68% 65% 49% 67% 65% 70% 69% 65% 64% 54% \$106 \$104 81 25 76 84 78 68 65 60 16 78 92 46 87 83 8 74 57 74 72 ted Average Progeny Values - NBNF122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17 2.7 -5.4 58 5.4 -0.4 0.3 0.4 2.4 0.45 \$133 \$119</th><th>65% 65% 79% 74% 74% 77% 72% 68% 65% 49% 67% 65% 70% 69% 64% 54% \$106 \$104 \$109 81 25 76 84 78 68 65 60 16 78 92 46 87 83 8 74 57 74 72 71 ted Average Progeny Values - NBNP122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17 2.7 -5.4 58 5.4 -0.4 0.3 0.4 2.4 0.45 \$133 \$119 \$144</th></t<>	Construction Construction<	ctc ctc <thcc< th=""> <thcc< th=""> <thcc< th=""></thcc<></thcc<></thcc<>	1 1	Constraint Constra	1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	65% 65% 79% 74% 77% 72% 68% 65% 49% 67% 65% 70% 69% 65% 64% 54% 81 25 76 84 78 68 65 60 16 78 92 46 87 83 8 74 57 ted Average Progeny Values - NBNP122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17 2.7 -5.4 58 5.4 -0.4 0.3 0.4 2.4 0.45	65% 65% 79% 74% 74% 77% 72% 68% 65% 49% 67% 65% 70% 69% 65% 64% 54% \$106 81 25 76 84 78 68 65 60 16 78 92 46 87 83 8 74 57 74 ted Average Progeny Values - NBNP122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17 2.7 -5.4 58 5.4 -0.4 0.3 0.4 2.4 0.45 \$133	65% 65% 79% 74% 74% 77% 72% 68% 65% 49% 67% 65% 70% 69% 65% 64% 54% \$106 \$104 81 25 76 84 78 68 65 60 16 78 92 46 87 83 8 74 57 74 72 ted Average Progeny Values - NBNF122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17 2.7 -5.4 58 5.4 -0.4 0.3 0.4 2.4 0.45 \$133 \$119	65% 65% 79% 74% 74% 77% 72% 68% 65% 49% 67% 65% 70% 69% 64% 54% \$106 \$104 \$109 81 25 76 84 78 68 65 60 16 78 92 46 87 83 8 74 57 74 72 71 ted Average Progeny Values - NBNP122 x NBNK103 2.1 -3.7 4.3 50 89 119 93 17 2.7 -5.4 58 5.4 -0.4 0.3 0.4 2.4 0.45 \$133 \$119 \$144

Purchased by:

\$

LOT 86. BEN NEVIS DORMIST K103

Lot 88 BEN NEVIS GERANIUM K176*

HBR	10/9/14	AMFU,CA2%,DDFU,NHFU	ID NBNK176 M	ATING TYPE Natural
BEN N	IARB PENDLET H A R B BLAC IEVIS FRONTR BALDRIDGE EN NEVIS PERI	K LADY 375 J H# OW F4159 BEN N NEBRASKA 90159	O S U 6T6 ULTRA [#] T ULTRAVOX 297E [#] FINKS VIXON 788 [#] EVIS GERANIUM Z119[#] TC STOCKMAN 365 [#] EN NEVIS GERANIUM T55 [#] BEN NEVIS GERANIUM L6	Geranium K176 is a thick topped, thumper of a cow. She has three retained daughters with us with her first daughter M63 now in the donor pen based on her first bull calf making Lot 1 and going to Stud duties at Ascot last year. She goes back to the legendary E40. 5+91 [#]
TACE	September	2020 TransTasman Angus C	attle Evaluation	Traits observed: BWT, 600WT, Scan (EMA, Rib, Rump, IMF)

1000						3									uno 0.0.		2, 0				,ap	,,
ale a la constante	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	4.3	3.9	-1.7	3.5	43	72	104	87	16	1.3	-1.5	52	1.6	1.0	0.2	-0.8	1.3	0.1	ABI	DOM	GRN	GRS
ACC	54%	46%	59%	72%	69%	69%	73%	67%	63%	53%	41%	60%	59%	65%	63%	59%	57%	45%	\$86	\$86	\$76	\$92
PERC	36	39	88	31	77	91	71	72	54	77	94	90	98	17	31	93	74	41	93	96	94	92
	Expe	cted Av	verage	Progen	y Value	s – NBI	NN239	NBNK	(176													
EBV	1.5	4.6	-3.7	4.4	51	87	122	108	18	1.0	-2.1	67	3.1	0	-1.1	-0.3	1.9	0.12	\$106	\$100	\$109	\$107
ACC	60%	49%	70%	81%	76%	75%	76%	71%	64%	59%	41%	65%	64%	68%	67%	63%	61%	49%	37%	36%	38%	38%

Purchased by:

\$

BEN NEVIS KIWI J21# Lot 89

HBR	12/8	/13	AMFL	J,CA20%	6,DDFU	NHFU,	ID	NBNJ2	1	MAT	ING TY	PE AI										
	PAPA	EQUAT	OR 292	28#			EXAR	EXPANI	D 1241#										ombines			
В	T EQUA	TOR 39	5M#			BE	N NEVI	S ZEXA	R Z86 ^{pv}									h sold fo	r \$8,000	0 and he	r daught	ter
	RM B	LACK M	AGIC 757	74 E A R#			BEN N	EVIS JEA	N X114#			M101 so	old for \$7	,000 to	Merit Fa	rms in 2	019.					
MILLA	LLAH MURRAH EQUATOR D78 ^{PV} BEN NEVIS KIWI E114* YTHANBRAF HENRY VIII LI8 ^{SV} VERMILLON YELLON																					
	YTHANBRAE HENRY VIII U8 ^{sv} VERMILION YELLOW																					
Ν	1ILLAH I	MURRA	H RADC) Y119#		BE	N NEVI	S KIWI A	\87#													
	MILLAH MURRAH RADO Y119# BEN NEVIS KIWI A87# MILLAH MURRAH RADO V31# BEN NEVIS KIWI U10																					
TACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
200	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	2.4	4.0	-5.9	5.3	50	89	122	123	13	2.3	-6.6	63	3.0	-0.9	-0.6	1.2	0.9	-0.45	ABI	DOM	GRN	GRS
ACC	cc 62% 53% 64% 80% 75% 76% 77% 72% 72% 72%										48%	67%	65%	69%	68%	65%	63%	56%	\$124	\$113	\$129	\$121
PERC	PERC 50 38 25 74 35 39 26 11 82										18	54	90	73	55	20	87	2	38	42	44	34

ACC	62%	53%	64%	80%	75%	76%	77%	72%	72%	64%	48%	67%	65%	69%	68%	65%	63%	56%	\$124	\$113	\$129	\$121
PERC	50	38	25	74	35	39	26	11	82	29	18	54	90	73	55	20	87	2	38	42	44	34
	RC 50 38 25 74 35 39 26 11 82 29 18 54 90 73 55 20 87 2 38 42 Expected Average Progeny Values – NBNP412 x NBNJ21																					
EBV	-1.2	1.9	-5.5	5.9	52	92	124	128	12	1.9	-4.5	68	5.5	-1.8	-1.9	1.3	1.9	-0.15	\$124	\$113	\$137	\$118
ACC	60%	53%	65%	76%	71%	72%	73%	69%	67%	64%	44%	65%	63%	67%	65%	63%	62%	55%	38%	36%	39%	39%

Purchased by:

\$

\$

Lot 90 BEN NEVIS JEAN J23*

					-																	
HBR	25/8	/13	AM39	%,CAFU	,DDFU,N	VH3%	ID	NBNJ2	3	MAT	ING TY	PE AI										
T	C TOTAI	I VIEW N L 410# RICA EILE			08 ^{sv}	CR)# ERN AB	#		ten crac doing at	king calv vility wh	/es – she ich com	332 cow never h es from t	ad a bad he big d	l one. W leep rib,	e put thi and goo	s down 1 d head-	to consti capable	tution a of grazir	and ng.
POSS		ІМРАСТ				BEN NE	VIS JEA	N B32#	ŧ			Jean J23	has inh	erited al	l this and	i is our t	sype of c	ow – sol	id, stron	g, thick a	and soft.	•
	CON	INEALY	LEAD O	N#			C A FL	JTURE D	DIRECTI	ON 532	1#											
P	OSS BL/	АСКСАР	9 5116#			BE	N NEVI	S JEAN 2	X91#													
	POS	S BLACK	CAP 20	5#			BEN N	IEVIS JE	AN S55	#												
	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1		-	-		Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
transformer Angel Seller Frankelse	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-2.8	7.5	-0.8	2.7	37	63	82	78	9	2.6	-5.7	42	2.0	1.1	2.2	-1.0	1.4	-0.05	ABI	DOM	GRN	GRS
ACC	63%	54%	68%	79%	71%	72%	71%	69%	67%	67%	47%	66%	65%	67%	66%	64%	62%	54%	\$81	\$84	\$72	\$84
PERC	81	11	94	95	98	85	97	19	32	98	96	15	4	95	70	23	95	97	95	96		
	Expe	cted Av	verage l	Progen	y Value	s – NBM	NP37 x	NBNJ2	3													
EBV	1.3	5.3	-4.1	4.5	51	90	116	104	14	3.2	-6.4	63	4.1	-0.5	0.7	-0.2	2.0	0.11	\$123	\$113	\$130	\$119
ACC	59%	49%	66%	76%	69%	70%	69%	66%	61%	64%	41%	63%	62%	65%	63%	61%	60%	50%	36%	34%	38%	37%

Purchased by:

www.bennevisangus.com.au

Lot 91 **BEN NEVIS KIWI J49**#

HBR 17/8/13

AMFU,CAFU,DDFU,NHFU

MATING TYPE AI

BON VIEW NEW DESIGN 208sv TC TOTAL 410# TC ERICA EILEEN 2047# POSS TOTAL IMPACT 745# CONNEALY LEAD ON# POSS BLACKCAP 5116# POSS BLACKCAP 205#

VERMILION DATELINE 7078# **VERMILION YELLOWSTONE#** VERMILION B JESTRESS 3912# **BEN NEVIS FERGIE B44**# BEN NEVIS QUASIM+95# **BEN NEVIS FERGIE W091**# BEN NEVIS FERGIE N80+93#

ID NBNJ49

We love the combination of feminity and body shape in this lovely cow with plenty of balance through a strong spine combined with depth of rib and flank. These are solid building blocks. The joining to Monarch is designed to build on the softness and depth while injecting more IMF under the hide. The resultant calf will be super docile. Her maternal sister sells as Lot 2.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	1					Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
AN A	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-11.2																DOM	GRN	GRS			
ACC	62%	2% 53% 63% 79% 73% 74% 77% 72% 65% 64% 49% 66% 65% 70% 68% 65% 65% 52% \$81															\$85	\$82	\$80			
PERC	98																97	92	98			
	Expe	cted Av	erage I	Progen	y Value	s – NBM	M128	x NBNJ	J49													
EBV	-3.1	3.5	-4.3	4.4	46	77	101	102	10	2.2	-4.2	57	4.2	-0.9	-0.4	-0.3	2.2	0.21	\$95	\$93	\$100	\$93
ACC	64%	54%	66%	83%	77%	78%	79%	74%	65%	69%	49%	69%	68%	72%	70%	68%	67%	57%	41%	39%	43%	42%

Purchased by:

\$

BEN NEVIS DORMIST J58[#] Lot 92

HBR	1/9/13	AMFU,CAFU,DDFU	J,NHFU	ID NBNJ58	MATING	TYPE AI
	PAPA EQU	ATOR 2928#		BON VIEW NEW DE	ESIGN 1407#	With a
	BT EQUATOR 3	95M#	EX	AR EXPAND 1241#		to be a
	RM BLACK N	MAGIC 7574 E A R#		V A R LUCY 8080#		sale un to the p
MIL	LAH MURRAH E	QUATOR D78 ^{PV}	BEN NE	VIS DORMIST Z130	#	to the p
	YTHANBRA	AE HENRY VIII U8 ^{sv}		BEN NEVIS TAN T4	1#	
	MILLAH MURR	AH RADO Y119#	BE	N NEVIS DORMIST W	/004#	
	MILLAH MI	URRAH RADO V31#		BEN NEVIS DORMI	ST U60#	

With a first calf selling as a yearling for \$9,000 this fine coated female was always going to be a work horse. Her second bull calf P31 was heading for a front pen position at the sale until he was injured. The joining to Newsflash should bring extra depth and docility to the power of the Millah Murrah D78's.

TACE	Septe	mber 2	020 Tra	insTasn	nan Ang	gus Ca	ttle Eva	luation	I					Ti	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
No.	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-2.3	3.8	-2.8	5.0	46	82	108	118	12	1.7	-7.4	60	3.0	1.4	2.3	-0.5	1.1	-0.34	ABI	DOM	GRN	GRS
ACC	62%	62% 53% 68% 78% 73% 75% 76% 71% 64% 64% 47% 66% 64% 69% 68% 64% 63% 54% \$105 \$98															\$98	\$103	\$104			
PERC	78																84	77	76			
	Expe	cted Av	erage I	Progen	y Value	s – NBI	NN239 3	(NBNJ	58													
EBV	-1.8	4.6	-4.2	5.2	52	92	124	124	15	1.2	-5.0	71	3.8	0.2	0	-0.2	1.8	-0.1	\$116	\$106	\$122	\$113
ACC	64%	53%	74%	84%	78%	78%	77%	73%	64%	64%	44%	68%	67%	70%	69%	65%	64%	54%	40%	39%	41 %	40%

Purchased by:

Hap and Ben Simpson

Jack and Mags finally catch the wayward calf

Lot 94 BEN NEVIS DORMIST J102*

HBR 29/7/13 AMFU,CAFU,DD2%,NHFU

MATING TYPE AI

PAPA EQUATOR 2928" BT EQUATOR 395M" RM BLACK MAGIC 7574 E A R" MILLAH MURRAH EQUATOR D78^{PV} YTHANBRAE HENRY VIII U8^{SV} MILLAH MURRAH RADO Y119" MILLAH MURRAH RADO V31"

HINGAIA 469* CRUSADER OF STERN AB* STERN 6129* BEN NEVIS DORMIST B37* PERRY POWER DESIGN 715* BEN NEVIS DORMIST Z1* BEN NEVIS DORMIST V051*

ID NBNJ102

Bringing more power and stretch and being a maternal machine is what sets this cows apart from the others. She always punches well abover her weight in the calf department. Her son NBNP177 was an absolute standout in our 2019 sale (please look up his photo on Angustech) and her maternal brother Helium H123 held stud duties both here and at Bensons at Top Waterloo, Walcha.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
televen her	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	election	Indexe	s
EBV	0.3																ABI	DOM	GRN	GRS		
ACC	63% 54% 84% 79% 72% 73% 75% 71% 64% 62% 49% 66% 65% 69% 68% 64% 63% 57% \$\$															\$94	\$95	\$83	\$99			
PERC	64	46	41	63	61	51	48	14	55	84	39	48	98	11	10	82	98	2	88	89	91	84
	Expe	cted Av	erage I	Progen	y Value	s – NBI	NN239 3	(NBNJ	102													
EBV	Expected Average Progeny Values - NBNN239 x NBNJ102 / -0.5 4.3 -5.3 5.1 52 94 127 125 17 0.9 -4.0 73 2.9 0.2 -0.5 -0.1 1.4 -0.17 \$1^2														\$110	\$104	\$112	\$110				
ACC	65%	53%	82%	84%	78%	77%	77%	73%	64%	63%	45%	68%	67%	70%	69%	65%	64%	55%	40%	38%	41 %	40%

Purchased by:

\$

Lot 95 BEN NEVIS GERANIUM J115#

HBR 7/7/13 AMFU,CAFU,DDFU,NHFU ID NBNJ115 MATING TYPE Natural

B/R NEW DIMENSION 7127^{SV} TE MANIA BARTEL B219^{PV} TE MANIA JEDDA W85[#] AYRVALE BARTEL E7^{PV} MYTTY IN FOCUS[#] EAGLEHAWK JEDDA B32^{SV} EAGLEHAWK JEDDA Z48[#] B/R NEW FRONTIER 095# BEN NEVIS FRONTIER B88^{5V} BEN NEVIS KIWI V48# BEN NEVIS GERANIUM G201# VERMILION YELLOWSTONE# BEN NEVIS GERANIUM A84# BEN NEVIS GERANIUM V29# We had always planned to flush Geranium J115's dam but when the daughter came in as stunning as she is in the flesh and after selling her son Ben Nevis Neocent for \$15,000 in 2018 to Dennis Heywood we fast tracked her to the Donor Program. She is hugely maternal with a wealth of carcase under the skin and blends beautifully with bulls like Exclusive and Beast Mode. She has recently been flushed and we exposed her once to Monarch post flush so that she will either sell PTIC at five weeks or NDP ready to be joined your way after the sale. Please check the supp sheet for details. Her dam sells as Lot 58.

TACE	Septe	mber 2	020 Tra	nsTasr	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, \$	Scan (El	MA, Rib	, Rump	, IMF)
Calculation and	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	9.0	7.9	-5.2	2.7	46	86	111	80	17	1.9	-5.5	63	6.0	-1.3	-0.8	0.6	2.2	0.3	ABI	DOM	GRN	GRS
ACC	63%	3% 57% 63% 80% 74% 75% 77% 72% 70% 64% 52% 67% 66% 70% 69% 65% 65% 57%															\$133	\$123	\$142	\$127		
PERC																22	14	28	20			
	Expe	cted Av	erage l	Progen	y Value	s – NBI	M128	x NBNJ	115													
EBV	7.0	5.7	-5.5	2.8	46	83	109	89	16	2.2	-5.0	62	4.9	-0.6	0	-0.5	2.5	0.42	\$121	\$112	\$130	\$117
ACC	64%	56%	66%	83%	77%	78%	79%	74%	68%	69%	51%	70%	69%	72%	71%	68%	67%	59%	42%	38%	44%	43%

Purchased by:

.....

LOT 95. BEN NEVIS JEAN J115

LOT 98. BEN NEVIS GERANIUM J134

Lot 96 BEN NEVIS GERANIUM J126#

HBR 18/7/13 AMFU,CAFU,D

AMFU,CAFU,DDFU,NHFU ID NBNJ126

MATING TYPE AI

B/R NEW DESIGN 036[°] TE MANIA UNLIMITED U3271[°] TE MANIA LOWAN R426+96[°] **TE MANIA INFINITY 04 379 AB**[#] TE MANIA PRINCE 153-93[°] TE MANIA 95102[°] TE MANIA 951006 AB[°]

BEN NEVIS DEL PEDRO D3⁵⁰ BEN NEVIS FLORYX U87* BEN NEVIS GERANIUM G140* BANQUET ZEALFUL Z021⁹⁰ BEN NEVIS GERANIUM D55⁶ BEN NEVIS GERANIUM T101*

BANQUET ZEALFUL Z021PV

J126 is a beautifully shaped cow with a traditional Angus head and a strong constitution and type. Her daughter sells as Lot 10. She stems straight from the E40 line and has a smoking joining to Beast Mode.

TACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation						Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
alara har	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-6.1	-5.8	-3.2	4.9	44	79	99	89	10	2.8	-4.3	53	1.7	-0.5	0.8	-1.2	2.1	0.41	ABI	DOM	GRN	GRS
ACC	64%	44% 58% 62% 80% 75% 76% 79% 74% 70% 62% 55% 68% 67% 73% 71% 68% 67% 58% \$83 3															\$85	\$82	\$83			
PERC															97	92	97					
	Expe	cted Av	erage l	Progen	y Value	s – NBN	1M51 x	NBNJ1	26													
EBV	-3.6	-0.6	-0.4	5.2	56	102	131	114	17	2.7	-5.3	75	3.2	-1.3	-0.7	-0.5	2.2	0.17	\$119	\$110	\$128	\$115
ACC	70%	60%	78%	88%	84%	83%	83%	77%	69%	74%	54%	73%	71%	75%	74%	71%	70%	60%	45%	44%	46%	46%

Purchased by:

HBR

Ś

Lot 97 BEN NEVIS FLORYX J130*

12/7/13 AMFU,CAFU,DDFU,NHFU

MATING TYPE Natural

TE MANIA UNLIMITED U3271# TE MANIA INFINITY 04 379 AB# TE MANIA 95102# BEN NEVIS FLORYX GB# BEN NEVIS XEROX X101^{PV} BEN NEVIS FLORYX E123# BEN NEVIS FLORYX U87#

ID NBNJ130

Donor J130 is a serious worker bee. Her first son sold to Wirrabilla in 2016 for \$12,000 and her second son to Noella Spicer in 2017 for \$13,000 with her third son retained by us as a Stud Sire over our first calvers. She is also a maternal brother to Ben Nevis Minister who sold for \$12,000 to Butcher Cattle Co in 2017. She is ultra feminine and fertile. Her dam G8 sells as Lot 54.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Television for	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	7.4	7.4	-5.6	2.2	45	83	107	86	18	3.3	-8	67	3.1	-0.5	0	-0.3	2.8	0.6	ABI	DOM	GRN	GRS
ACC	66%	61%	69%	81%	75%	76%	78%	73%	71%	70%	56%	69%	69%	72%	71%	69%	67%	62%	\$133	\$119	\$149	\$123
PERC	16	11	29	10	67	62	65	73	34	6	5	36	89	61	37	82	18	93	22	23	20	29
	Expe	cted Av	erage l	Progen	y Value	s – NM	MP15 x	NBNJ1	30													
EBV	8.1	9.6	-6.7	2.6	49	93	118	96	21	3.1	-6.9	72	4.7	0	0.5	-0.3	2.7	0.43	\$140	\$126	\$155	\$132
ACC	65%	55%	81%	84%	74%	74%	75%	71%	65%	66%	47%	66%	64%	68%	66%	64%	63%	56%	40%	36%	4 1 %	40%

Purchased by:

Lot 98 BEN NEVIS GERANIUM J134#

HBR 22/7/13 AMFU,CA4%,DD2%,NHFU

MATING TYPE AI

PAPA EQUATOR 2928# BT EQUATOR 395M# RM BLACK MAGIC 7574 E A R# MILLAH MURRAH EQUATOR D78PV YTHANBRAE HENRY VIII U83V MILLAH MURRAH RADO Y119# MILLAH MURRAH RADO V31#

EXAR EXPAND 1241# BEN NEVIS ZEXAR Z86" BEN NEVIS JEAN X114# BEN NEVIS GERANIUM B77# FORRES NEW DESIGN U95# BEN NEVIS GERANIUM Z46# BEN NEVIS UTAH U101#

ID NBNJ134

A big framed, feminine, super productive cow who has a distinguished track record with us. On her score card she had the best L heifer in 2015, the best Autumn drop N heifer N61 in 2017 and then she produced the cracking Propogate P37 who sold to Merit Farms last year for \$28,000 and features as a joining sire here . A descendent of the great E40 she is a maternal sister to Lot 68 - L84 and is the maternal aunt to the fabulous Lot 79 - K18. Her maternal brother Ben Nevis Mozart sold for \$13,000 in 2017 to lan and Noella Spicer. She suffered an injury to her hip during flushing this year. She is fully weight bearing and functional.

Ś

IACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (E	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-0.1	3.1	-6.6	6.7	57	103	138	138	15	3.2	-7.5	77	3.0	-1.6	-1.0	0.7	1.5	-0.37	ABI	DOM	GRN	GRS
ACC	61%	53%	65%	75%	70%	69%	70%	68%	65%	62%	47%	65%	63%	67%	65%	64%	63%	55%	\$137	\$119	\$150	\$129
PERC	67	47	17	93	8	6	6	3	67	7	9	10	90	89	67	40	65	4	16	23	19	16
	Expe	cted Av	verage l	Progen	y Value	s – NBI	MM128	x NBN.	J134													
EBV	2.5	3.3	-6.2	4.8	51	91	123	118	14	2.8	-6.0	69	3.4	-0.8	-0.1	-0.5	2.1	0.08	\$123	\$110	\$134	\$118
ACC	63%	54%	67%	81%	75%	75%	75%	72%	65%	68%	48%	69%	67%	71%	69%	67%	66%	58%	40%	38%	42%	41%

Purchased by:

Lot 99 BEN NEVIS JEAN J148*

HBR 12/8/13 AMF

3 AMFU,CAFU,DDFU,NH1%

MATING TYPE AI

B/R NEW DIMENSION 7127^{sv} TE MANIA BARTEL B219^{pv} TE MANIA JEDDA W85^s AYRVALE BARTEL E7^{pv} MYTTY IN FOCUS[#] EAGLEHAWK JEDDA B32^{sv} EAGLEHAWK JEDDA Z48[#] TE MANIA UNLIMITED U3271" TE MANIA INFINITY 04 379 AB TE MANIA 95102" BEN NEVIS GERANIUM G115" MYTTY IN FOCUS" BEN NEVIS GERANIUM E168" BEN NEVIS ROCY C6"

ID NBNJ148

We have really amped up our ET program to enable us to have female sales every three years. Given we know the genetic lines so well we selected three of the top heifers from our most exciting lines to flush this year and J148's daughter P182 was our first choice. J148 was Lot 117 – G115's only heifer calf with the rest being bulls. These are descendents of the great Geranium E40 a pathway which leads to a significant number of our dominant cow lines today. Her joining to Paratrooper is hotly anticipated.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Technical Areas	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	4.3	2.6	-2.5	4.8	56	95	127	101	23	2.6	-7.2	74	5.4	-0.4	0.1	0.3	2.1	0.45	ABI	DOM	GRN	GRS
ACC	66%	60%	84%	80%	75%	75%	78%	73%	70%	63%	54%	67%	67%	72%	71%	66%	67%	60%	\$139	\$122	\$149	\$133
PERC	36	52	80	63	10	21	18	42	8	19	11	15	54	57	34	59	40	83	14	16	20	10
	Expe	cted Av	erage I	Progen	y Value	s – NMI	MP15 x	NBNJ1	148													
EBV	6.6	7.2	-5.2	3.9	55	99	128	104	23	2.8	-6.5	76	5.9	0.1	0.5	0.1	2.4	0.35	\$143	\$128	\$155	\$137
ACC	65%	54%	88%	84%	74%	73%	75%	71%	65%	62%	46%	65%	63%	68%	66%	63%	63%	55%	39%	36%	40%	39%

Purchased by:

\$

Lot 100 BEN NEVIS GERANIUM H6*

HBR	20/2/12	AMFU,CAFU,DDFU	NHFU,	ID NBNH6	MATINO	TYPE Natural	
	VERMILION	N DATELINE 7078#		BEN NEVIS QUASIM	1+95#	Again another descendant of	of t
J8	& C APPEAL A	10 ^{PV}	BEI	N NEVIS TAN T41#		with tremendous type and	
	J & C MISS C	HEYENNE W3#		BEN NEVIS KIWI Q41-	+95#	displayed in her bull calf My She is a beautifully quiet na	
J & C E	VIDENCE E11	sv	BEN NE	VIS GERANIUM V29	#	She is a beautifully quiet ha	tui
	S A F 598 B	ANDO 5175#		TC STOCKMAN 216	4#		
Jð	& C DAISY'S 5	175 A2 [₽]	BEI	N NEVIS GERANIUM	T101#		
	LANCAMA	REE DAISY T3#		BEN NEVIS GERANI	UM E40.#		
TACE	Sentember	2020 TransTasman A	ngus Cat	tle Evaluation		Trait	S (

Again another descendant of the great Geranium E40 H6 is a massive, big, strong cow with tremendous type and constitution. Her strength and power of head and jaw was displayed in her bull calf Mystic M97 that sold to Quarterway Angus in 2017 for \$16,000. She is a beautifully quiet natured cow.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation	l					Т	raits ob	served:	BWT, 6	00WT, S	Scan (E	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	*S
EBV	-13.5	-8.8	-4.3	8.4	56	96	123	118	9	2.4	-1.3	82	5.9	-1.3	0.5	1.0	0.8	0.35	ABI	DOM	GRN	GRS
ACC	57%	45%	64%	78%	72%	73%	74%	69%	64%	60%	42%	64%	61%	65%	63%	60%	60%	51%	\$83	\$89	\$74	\$90
PERC	99	99	51	99	11	17	25	16	97	26	95	4.0	45	83	24	27	90	74	95	94	95	93
	Expe	cted Av	verage I	Progen	y Value	s – USA	186900	054 x N	BNH6													
EBV	-3.1	-1.6	-5.3	5.6	59	103	129	122	12	2.7	-3.7	81	9.3	-1.6	-0.5	1.5	2.3	0.17	\$131	\$122	\$142	\$126
ACC	53%	44%	60%	76%	72%	73%	72%	69%	66%	63%	38%	67%	64%	66%	61%	62%	62%	49%	35%	34%	37%	36%

Purchased by:

.....

LOT 102. BEN NEVIS DORMIST H26

H26's son - the \$40,000 Ben Nevis Quantum

Lot 101 BEN NEVIS VIOLIN H10*

HBR 3/7/12

AMFU,CAFU,DDFU,NH5%

MATING TYPE Natural

S A V FINAL ANSWER 0035* HARB PENDLETON 765 J Hsv H A R B BLACK LADY 375 J H* **BEN NEVIS FRONTROW F41sv** BALDRIDGE NEBRASKA 901sv **BEN NEVIS PERFECTION A103**# **BEN NEVIS PERFECTION Y47**#

BANQUET MERLOT X135# BANQUET ZEALFUL Z021PV BANQUET DREAM X087# **BEN NEVIS VIOLIN F115#** BEN NEVIS XEROX X101PV **BEN NEVIS VIOLIN A2# BEN NEVIS VIOLIN X100[#]**

ID NBNH10

In hindsight we wish we had pinned our ears back and used BN Frontrow more. Like Lot 14 H215, H10 displays a rare combination of softness, quality, and thickness and is eternally youthful. We just love her. Her first daughter K3 was the highest ever scanning animal on Ben Nevis going off the scanner - she went on to become a very successful Donor selling two bulls into studs Magnum M41 to Pine Creek for \$16,000 in 2017 and National N120 to Nampara Angus for \$14,000 in 2018. Her sons have always made the front pen.

TACE	Septe	mber 2	020 Tra	insTasr	nan Ang	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
A.X.	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	election	n Indexe	s
EBV	3.5	2.0	-2.4	3.7	45	78	106	86	17	0.7	-1.7	60	1.0	0.6	-0.1	-0.9	1.1	0.08	ABI	DOM	GRN	GRS
ACC	58%	47%	54%	81%	73%	72%	77%	71%	60%	54%	38%	62%	61%	68%	66%	61%	60%	43%	\$83	\$88	\$72	\$91
PERC	42	58	81	35	69	78	67	73	46	93	93	67	99	26	40	94	81	38	95	95	95	92
	Expe	cted Av	erage l	Progen	y Value	s – USA	186900	054 x N	BNH10													
EBV	5.4	3.9	-4.4	3.3	53	94	121	106	16	1.8	-3.9	69	6.9	-0.6	-0.8	0.6	2.4	0.04	\$131	\$122	\$141	\$126
ACC	54%	45%	55%	77%	73%	72%	73%	70%	64%	60%	36%	66%	64%	68%	63%	63%	62%	45%	35%	33%	37%	36%

Purchased by:

Ś

\$

Lot 102 BEN NEVIS DORMIST H26*

HBR	13/7	/12	AMFU	J,CAFU,	DD1%,N	NHFU	ID	NBNH	26	MAT	ING TY	PE AI										
TE MA	TE MANI TE M NIA IN TE M TE MANI	NEW DE A UNLII ANIA LO FINITY IANIA P A 95102 IANIA 9	MITED L WAN R4 04 379 RINCE 1	J3271* i26+96* AB * 53-93*		BEN NE	N NEVI BEN N VIS DC CRUS N NEVI	S AROD EVIS KIV PRMIST ADER O S DORM	VI V48#	N AB# 7#		this yea thicknes dam. He saying t cow her the pow and has	r for \$40 ss, softno er daugh hat we s d in and rer of peo the best),000 to ess and s ter Lot 7 hould ha out the digrees.	Sam Kin style with 7 – K16 : ave flush process Our only ong the	ig and fa h a gene stunning ied both of doing / consola Autumn	mily at I rous spla g and suc these co this cov ation is t Heifer o	Bowmon ash of X f ccessful i ows and v sale has	t. Quan factor co n her ov while w s taught other da orary. H	tico's rar omes fro vn right. e though : us so m ughter P I26 is slig	e combi m his be It goes v It we kne uch mor 23 is wit	vithout ew our re about h us still
	Septe CEDir	CEDtr	020 Tra GL	ansTasr BW	nan An 200	gus Ca 400	ttle Eva 600	Iluation	Milk	SS	DTC	CWT	EMA					00WT, S	Scan (E			. ,
EBV	3.5	-1.8	-4.3	3.5	43	84	107	95	11	2.0	-3.1	58	1.7	-1.0	-0.3	-1.1	1.9	-0.04	ABI	DOM	GRN	GRS

EBV	3.5	-1.8	-4.3	3.5	43	84	107	95	11	2.0	-3.1	58	1.7	-1.0	-0.3	-1.1	1.9	-0.04	ABI	DOM	GRN	GRS
ACC	63%	58%	64%	80%	74%	73%	77%	73%	66%	61%	55%	66%	65%	71%	69%	66%	65%	58%	\$96	\$97	\$97	\$97
PERC	42	84	51	31	77	57	64	56	90	43	79	74	97	76	46	96	48	24	86	86	82	87
	Expe	cted Av	erage l	Progen	y Value	s – NBI	VP122 >	NBNH	26													
EBV	5.3	1.7	-2.9	3.3	51	92	120	95	15	2.4	-5.3	62	3.3	-0.2	1.0	-1.1	2.7	0.32	\$128	\$115	\$138	\$123
ACC	60%	53%	65%	77%	71%	71%	73%	69%	61%	62%	47%	63%	62%	67%	65%	63%	62%	54%	39%	36%	40%	39%

Purchased by:

Lot 103 BEN NEVIS UMBRA H75*

HBR	24/7/12	AMFU,CA2%,DDFU,NHFU	ID NBNH75	MATING TYPE AI
HBR	24/7/12	AMFU,CA2%,DDFU,NHFU	ID NBNH75	MATING TYPE AI

B/R NEW DESIGN 036# TE MANIA UNLIMITED U3271# TE MANIA LOWAN R426+96# TE MANIA INFINITY 04 379 AB# TE MANIA PRINCE 153-93# TE MANIA 95102# TE MANIA 92F006 AB#

BEN NEVIS QUASIM+95# BEN NEVIS VOLT V64# BEN NEVIS JEAN R38+96# **BEN NEVIS UMBRA A126#** BEN NEVIS TAN T41# **BEN NEVIS UMBRA V27#** BEN NEVIS UMBRA T120# A bigger framed daughter of Infinity this time but still with the beautiful soft skin, depth of body and constitution that is so vital we maintain. Her joining to Metamorphic will build on this strength adding even more thickness and style.

TACE	Septe	mber 2	020 Tra	nsTasr	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
and the second second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	-2.6	-4.6	-7.2	3.9	36	67	80	77	7	1.7	-2.5	46	3.0	-1.1	0.3	-0.3	1.6	0.37	ABI	DOM	GRN	GRS
ACC	62%	57%	83%	78%	73%	72%	77%	72%	62%	58%	54%	65%	64%	70%	68%	65%	64%	55%	\$70	\$83	\$63	\$74
PERC	80	94	11	40	96	96	98	87	99	58	87	97	90	79	29	82	61	76	98	97	97	99
	Expe	cted Av	verage l	Progen	y Value	s – NBI	VM51 x	NBNH	75													
EBV	-1.8	0.1	-2.4	4.7	52	96	122	108	15	2.1	-4.4	71	3.8	-1.6	-1.0	0	1.9	0.15	\$113	\$109	\$119	\$110
ACC	69%	59%	89%	87%	83%	81%	82%	76%	65%	72%	54%	71%	69%	74%	72%	69%	68%	59%	44%	43%	45%	45%

Purchased by:

Lot 48 Ben Nevis June H88 and calf

LOT 105. BEN NEVIS JEAN H93

LOT 113. BEN NEVIS GERANIUM G27 (see page 64)

THANK YOU

Organising and strategising this Cow Sale has been a massive job and we would sincerely like to thank the following people whose advice and friendship we value greatly. Ben Simpson, Paul Dooley, Cherry Steel, Stu Hobbs, Kylie Steel, Ross Thompson, plus the boys from Nutrien Boulton's – Miles Archdale and Mat Larkings.

LOT 110. BEN NEVIS WILCOOLA G4 (see page 63)

LOT 115. BEN NEVIS DORMIST G76 (see page 64)

For making the catalogue happen and keeping me sane, a big thank you to Megan Scrivener – our talented, logical, creative and funny graphic designer. Then finally thank you to our awesome stationhand Hamish Worthing for all his hard work.

Lot 104 BEN NEVIS GERANIUM H84#

HBR 1/8/12 AMFU

AMFU,CA4%,DD2%,NHFU ID NBNH84

MATING TYPE Natural

B/R NEW DESIGN 036" TE MANIA UNLIMITED U3271" TE MANIA LOWAN R426+96" **TE MANIA INFINITY 04 379 AB** TE MANIA PRINCE 153-93" TE MANIA 95102" TE MANIA 92F006 AB"

EXAR EXPAND 1241* BEN NEVIS ZEXAR Z86° BEN NEVIS JEAN X114* BEN NEVIS GERANIUM B77* FORRES NEW DESIGN U95* BEN NEVIS GERANIUM Z46* BEN NEVIS UTAH U101* The dam of our exciting donor Lot 79 - K18 whose progeny have averaged \$15,000. It is clear that the power K18 transmits comes directly from her dam but that she does this without sacrificing her fine quality skin and coat – a unique valuable asset. Her maternal sister is none other than our other superstar Donor Lot 98 - J134 who was the dam of the \$28,000 Propogate P37 that sold to Merit Farms in 2019 as well as Lot 68 - L84. Again the power of these female lines is evident and her joining allows you to tap directly into the cutting edge of our breeding program.

TACE	Septe	mber 2	020 Tra	nsTasr	nan An	gus Ca	ttle Eva	luation						Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
A.X.	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	-1.8	-5.8	-3.4	+5.4	43	81	102	92	8	2.9	-1.5	55	4.3	-2.6	-1.4	0.3	2.5	0.60	ABI	DOM	GRN	GRS
ACC	64%	59%	87%	76%	74%	74%	78%	73%	68%	63%	56%	68%	67%	72%	71%	67%	67%	58%	\$110	\$104	\$123	\$102
PERC	76	96	67	76	77	67	75	62	99	12	30	82	74	98	77	59	26	93	67	72	53	80
	Expe	cted Av	erage I	Progen	y Value	s – NBN	NP412 >		84													
EBV	-3.3			5.9	49	88	114	112	10	2.2		64	6.1	-2.6	-2.3	0.9	2.7		\$117	\$108	\$134	\$108
ACC	61%			74%	71%	71%	74%	70%	65%	63%		66%	64%	68%	67%	64%	64%					

Purchased by:

Ś

Lot 105 BEN NEVIS JEAN H93*

HBR 3/8/12 AMFU,CA1%,DD11%,NHFU ID NBNH93 MATING TYPE Natural

VERMILION DATELINE 7078#	HINGAIA 469*
J & C APPEAL A10 ^{₽∨}	CRUSADER OF STERN AB*
J & C MISS CHEYENNE W3*	STERN 6129#
RAFF EMPIRE E269sv	BEN NEVIS JEAN B57#
S A F 598 BANDO 5175#	FORRES NEW DESIGN U95*
RAFF DORIS A55*	BEN NEVIS JEAN Y12#
RAFF DORIS Y70*	BEN NEVIS JEAN R38+96#

Speaking of the power of female lines and along comes a very special cow whose only two daughters made their way straight to our Donor Pen. One of these, Jean K2 may well be the star of this sale and sells as Lot 75. We have had so much success keeping the Ben Nevis component in our lines strong which gives us our unique edge but special bulls like Empire have only added to that uniqueness. H93 is just the type of cow we strive to produce, feminine and yet solid and strong enough to hold her own in harsh times and produce powerful bulls.

September 2020 TransTasman Angus Cattle Evaluation Traits observed: BWT, 600WT, Scan (E CEDir CEDtr GL BW 200 400 600 MCW Milk SS DTC CWT EMA RIB P8 RBY IMF NFI-F SS															served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
-2.3	-7.1	-0.6	5.7	41	71	89	88	12	0.8	-1.1	52	2.8	-1.6	-2.2	1.2	1.1	-0.43	ABI	DOM	GRN	GRS
61%	54%	62%	80%	74%	73%	77%	72%	64%	59%	41 %	65%	63%	68%	67%	63%	62%	48%	\$69	\$84	\$62	\$74
78	98	95	81	86	93	94	70	89	91	96	89	92	89	91	20	81	3	98	97	98	99
Expec	ted Av	erage I	Progen	y Value	s – NBN	NP122 >	NBNH	93													
2.4	-1.0	-1.1	4.4	50	86	110	91	15	1.8	-4.3	59	3.9	-0.5	0	0.1	2.3	0.13	\$114	\$109	\$120	\$111
59%	51%	64%	77%	71%	71%	73%	68%	60%	61%	40%	63%	61%	66%	64%	61%	61%	49%	36%	34%	37%	37%
- 5 E	2.3 1% 78 Expec 2.4	2.3 -7.1 1% 54% 78 98 Expected Av 2.4 -1.0	2.3 -7.1 -0.6 1% 54% 62% 78 98 95 Expected Average I 2.4 -1.0 -1.1	2.3 -7.1 -0.6 5.7 1% 54% 62% 80% 78 98 95 81 Expected Average Progen 2.4 -1.0 -1.1 4.4	2.3 -7.1 -0.6 5.7 41 1% 54% 62% 80% 74% 78 98 95 81 86 Expected Average Progeny Values 2.4 -1.0 -1.1 4.4 50	2.3 -7.1 -0.6 5.7 41 71 1% 54% 62% 80% 74% 73% 78 98 95 81 86 93 Expected Average Progeny Values - NBN 2.4 -1.0 -1.1 4.4 50 86	2.3 -7.1 -0.6 5.7 41 71 89 1% 54% 62% 80% 74% 73% 77% 78 98 95 81 86 93 94 Expected Average Progeny Values - NBNP122 x 2.4 -1.0 -1.1 4.4 50 86 110	2.3 -7.1 -0.6 5.7 41 71 89 88 1% 54% 62% 80% 74% 73% 77% 72% 78 98 95 81 86 93 94 70 Expected Average Progeny Values – NBNP122 × NBNH 2.4 -1.0 -1.1 4.4 50 86 110 91	2.3 -7.1 -0.6 5.7 41 71 89 88 12 1% 54% 62% 80% 74% 73% 77% 72% 64% 78 98 95 81 86 93 94 70 89 Expected Average Progeny Values - NBNP122 x NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 78 98 95 81 86 93 94 70 89 91 Expected Average Progeny Values - NBNP122 x NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 78 98 95 81 86 93 94 70 89 91 96 Expected Average Progeny Values - NBNP122 × NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 78 98 95 81 86 93 94 70 89 91 96 89 Expected Average Progeny Values - NBNP122 x NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3 59	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 2.8 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 63% 78 98 95 81 86 93 94 70 89 91 96 89 92 Expected Average Progeny Values - NBNP122 x NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3 59 3.9	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 2.8 -1.6 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 63% 68% 78 98 95 81 86 93 94 70 89 91 96 89 92 89 Expected Average Progeny Values - NBNP122 x NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3 59 3.9 -0.5	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 2.8 -1.6 -2.2 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 63% 68% 67% 78 98 95 81 86 93 94 70 89 91 96 89 92 89 91 Expected Average Progeny Values - NBNP122 × NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3 59 3.9 -0.5 0	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 2.8 -1.6 -2.2 1.2 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 63% 68% 67% 63% 78 98 95 81 86 93 94 70 89 91 96 89 92 89 91 20 Expected Average Progeny Values - NBNP122 x NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3 59 3.9 -0.5 0 0.1	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 2.8 -1.6 -2.2 1.2 1.1 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 63% 68% 67% 63% 62% 78 98 95 81 86 93 94 70 89 91 96 89 92 89 91 20 81 Expected Average Progeny Values – NBNP122 x NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3 59 3.9 -0.5 0 0.1 2.3	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 2.8 -1.6 -2.2 1.2 1.1 -0.43 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 63% 68% 67% 63% 62% 48% 78 98 95 81 86 93 94 70 89 91 96 89 92 89 91 20 81 3 Expected Average Progeny Values - NBNP122 x NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3 59 3.9 -0.5 0 0.1 2.3 0.13	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 2.8 -1.6 -2.2 1.2 1.1 -0.43 ABI 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 63% 68% 67% 63% 62% 48% \$69 78 98 95 81 86 93 94 70 89 91 96 89 92 89 91 20 81 3 98 Expected Average Progeny Values - NBNP122 × NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3 59 3.9 -0.5 0 0.1 2.3 0.13 \$114	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 2.8 -1.6 -2.2 1.2 1.1 -0.43 ABI DOM 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 63% 68% 67% 63% 62% 48% \$69 \$84 78 98 95 81 86 93 94 70 89 91 96 89 92 89 91 20 81 3 98 97 Expected Average Progeny Values - NBNP122 × NBNH93 2.4 -1.0 -1.1 4.4 50 86 110 91 15 1.8 -4.3 59 3.9 -0.5 0 0.1 2.3 0.13 \$114 \$109	2.3 -7.1 -0.6 5.7 41 71 89 88 12 0.8 -1.1 52 2.8 -1.6 -2.2 1.2 1.1 -0.43 ABI DOM GRN 1% 54% 62% 80% 74% 73% 77% 72% 64% 59% 41% 65% 63% 68% 67% 63% 62% 48% \$69 \$84 \$62 78 98 95 81 86 93 94 70 89 91 96 89 92 89 91 20 81 3 98 97 98 Expected Average Progeny Values – NBNP122 × NBNH93 VBIN 10 91 15 1.8 -4.3 59 3.9 -0.5 0 0.1 2.3 0.13 \$114 \$109 \$120

Purchased by:

Lot 106 BEN NEVIS GERANIUM H169*

HBR	29/8/12	AMFU,CA1%,DDFU,NH12%	ID NBNH169	MATING

MATING TYPE Natural

S A F FOCUS OF E R[#] MYTTY IN FOCUS[#] MYTTY COUNTESS 906[#] BEN NEVIS ERITREA E6^{SV} BULLIAC X-RAY X10[#] BEN NEVIS DORMIST C46[#] BEN NEVIS DORMIST C46[#]

BEN NEVIS XEROX X101[®] BEN NEVIS GERANIUM Q55+95^{sv} BEN NEVIS AXIS A18[#] PINE CREEK NUDGE N36+93[#] BEN NEVIS GERANIUM Q43+95[#]

C A FUTURE DIRECTION 5321#

BEN NEVIS GERANIUM L6+91#

Another straight line to the famous E40 she has had such a positive influence on our breeding program. H169 is a big, upstanding matron with a strong spine and gentle disposition. Her daughters have all been retained in the herd and her son Ben Nevis Machine sold to long term clients of 50+ years Peter Lockyer for \$11,000 in 2017. H169's dam was a terrific and old favourite cow here and H169 has 2 maternal sisters in the sale in Lot 41 – J145 and Lot 13 – L83.

Ś

TACE	Septe	mber 2	020 Tra	nsTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Calculation of the	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	2.0	-5.4	-1.6	6.6	51	89	120	102	16	1.7	0.4	66	2.9	-1.8	-1.7	1.4	0.4	-0.29	ABI	DOM	GRN	GRS
ACC	59%	48%	55%	81%	74%	74%	78%	72%	68%	57%	40%	64%	63%	69%	67%	63%	63%	45%	\$89	\$97	\$78	\$98
PERC	52	96	89	93	29	38	31	41	58	58	99	42	91	92	83	14	97	6	91	86	93	86
	Expe	cted Av	verage l	Progen	y Value	s – USA	182199	911 x N	BNH16	9												
EBV	6.3	0.5	-4.7	4.8	56	98	129	107	18	1.3	-0.7	71	7.4	-2.0	-2.2	1.9	1.5	0.15	\$122	\$120	\$125	\$123
ACC	67%	51%	76%	89%	85%	85%	86%	78%	72%	75%	43%	73%	74%	77%	74%	71%	73%	53%	42%	4 1 %	44%	44%

Lot 107 BEN NEVIS GERANIUM H171*

HBR 30/8/12 AMFU,CA99%,DDFU,NHFU

TE MANIA UNLIMITED U3271[#] TE MANIA INFINITY 04 379 AB[#] TE MANIA 95102[#] BEN NEVIS DINO F6^{5V} BEN NEVIS ZEXAR Z86^{#V} BEN NEVIS JEAN D114[#]

BEN NEVIS JEAN Y80#

EXAR EXPAND 1241* BEN NEVIS ZEXAR Z86°' BEN NEVIS JEAN X114* BEN NEVIS GERANIUM D40°' BOOROOMOOKA RACE R1+96' BEN NEVIS GERANIUM W035* BEN NEVIS HELEN+93*

ID NBNH171

Another of Donor D40's natural calves H171 is a big, upstanding cow with the classic fine, soft skin anda big rib. See her dam D40 in our Donors page on our website and you will see she has the same classic lines. Her first two bull calves both sold for \$10,000 to Peter Lockyer from Walcha. Her maternal sister sells as Lot 3.

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
redered here	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	es
EBV	-2.2	-7.7	-2.9	6.6	49	91	121	108	18	1.9	-3.6	66	2.3	-3.6	-4.8	1.8	1.2	0.02	ABI	DOM	GRN	GRS
ACC	57%	47%	51%	80%	74%	74%	76%	70%	68%	59%	40%	63%	62%	68%	66%	62%	60%	44%	\$101	\$101	\$108	\$99
PERC	78	99	75	93	43	32	29	29	40	48	72	44	95	99	99	7	77	31	81	79	72	84
	Expe	cted Av	erage l	Progen	y Value	s – USA	186900)54 x N	BNH17	1												
EBV	2.6	-1.0	-4.6	4.7	55	100	128	117	16	2.4	-4.8	72	7.5	-2.7	-3.1	1.9	2.5	0.01	\$140	\$128	\$159	\$130
ACC	53%	45%	54%	77%	73%	73%	73%	70%	68%	62%	37%	66%	64%	68%	63%	63%	62%	46%	35%	34%	37%	36%

MATING TYPE Natural

Purchased by:

\$

Lot 108 BEN NEVIS FLORYX H200*

HBR	20/9/12	AMFU,CAFU,DDFU,NH2%	ID NBNH200	MATING TYPE Natural

VERMILION DATELINE 7078*	
J & C APPEAL A10 ^{PV}	
J & C MISS CHEYENNE W3*	
J & C EVIDENCE E11sv	E
S A F 598 BANDO 5175*	
J & C DAISY'S 5175 A2 ^{PV}	
LANCAMAREE DAISY T3*	

C A FUTURE DIRECTION 5321# BEN NEVIS XEROX X101^{PV} BEN NEVIS GERANIUM Q55+95^{SV} BEN NEVIS FLORYX E123# VICTOREE SCOTCH CAP K46+90^{SV} BEN NEVIS FLORYX U87# BEN NEVIS FLORYX J16+89# H200's dam E123 has had a distinguised career with us, and even though they only had two daughters in that time H200 and Lot 54 G8, her bull calves never failed to make the top pen. Now that she has gone both daughters have followed in her tradition with both H200 and G8's bull calves making the top pen this year with H200's Lot 4 selling for \$15,000 to the Stackman family at Walcha and G8's selling for \$12,000 to Andrew Carruthers at Armidale. H200 is a long framed, high milking cow with a superb disposition. She play well with any sire but her joining to Monarch should be a treat.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation	l					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
indered have	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	-2.5	-4.8	-5.9	6.4	54	93	112	104	11	2.1	-4.3	76	3.9	-0.3	1.8	0.3	1.4	0.22	ABI	DOM	GRN	GRS
ACC	56%	46%	63%	74%	73%	72%	76%	69%	67%	61%	41 %	64%	63%	68%	67%	63%	62%	53%	\$105	\$108	\$101	\$106
PERC	79	95	25	91	17	26	50	36	92	38	59	11	80	54	6	59	70	57	75	60	79	73
	Expe	cted Av	verage I	Progen	y Value	s – NBI	M128	x NBNH	1200													
EBV	1.3	-0.7	-5.9	4.7	49	86	110	101	12	2.3	-4.4	69	3.9	-0.1	1.3	-0.7	2.1	0.38	\$107	\$105	\$109	\$106
ACC	61%	51%	66%	80%	77%	77%	78%	72%	66%	67%	45%	68%	67%	71%	70%	67%	66%	57%	40%	37%	41 %	4 1 %

Purchased by:

\$

\$

Lot 109 BEN NEVIS KIWI H210*

HBR	3/10/12 AMFU,CA	2%,DDFU,NHFU ID NBNH21	0 MATINO	TYPE Natural
	BANQUET MERLOT X13 BANQUET ZEALFUL Z021 ^{PV} BANQUET DREAM X087* NEVIS DEL PEDRO D3 ^{SV}	* VERMILION YEL BEN NEVIS ZELLOW BEN NEVIS FLORI BEN NEVIS KIWI B86#	STONE Z21sv	A thumping cow with an outcross pedigree to excite. Her abundance of natural thickness will allow huge flexibility in the way that she is joined.
E	VICTOREE SCOTCH CAP BEN NEVIS FLORYX U87# BEN NEVIS FLORYX J16+	BEN NEVIS KIWI Y23	3#	

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
Calculation of the second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	1.8	3.1	-3.0	4.8	43	74	96	89	11	1.5	-2.7	54	5.1	-0.5	0.3	0.6	0.9	0.11	ABI	DOM	GRN	GRS
ACC	53%	41%	48%	77%	69%	68%	74%	68%	58%	44%	34%	59%	57%	64%	62%	57%	56%	37%	\$91	\$97	\$82	\$96
PERC	54	47	73	63	77	87	86	68	90	68	85	85	60	61	29	45	87	42	90	86	92	88
	Expe	cted Av	erage l	Progen	y Value	s – NBM	M128	x NBNH	1210													
EBV	3.4	3.3	-4.4	3.9	44	77	102	93	13	2.0	-3.6	58	4.5	-0.2	0.6	-0.5	1.8	0.32	\$100	\$99	\$100	\$101
ACC	59%	48%	58%	82%	75%	75%	77%	72%	62%	59%	42%	66%	64%	69%	67%	64%	63%	49%	37%	35%	39%	39%

Purchased by:

Lot 110 BEN NEVIS WILCOOLA G4*

HBR 18/4/11 A

AMFU,CAFU,DD8%,NH2% ID NBNG4

MATING TYPE Natural

ARDROSSAN DIRECTION W109^{PV} ARDROSSAN ADMIRAL A2^{PV} KENNY'S CREEK ROSEBUD W171# **BANQUET DANDY D274^{PV}** B/R NEW DESIGN 036# BANQUET DREAM V104# BANQUET DREAM Q34+95#

BEN NEVIS XEROX X101[®] BEN NEVIS GERANIUM Q55+95^{SV} LONGFORD WILCOOLA C14# VERMILION DATELINE 7078*

C A FUTURE DIRECTION 5321#

VERMONT WILCOOLA Z334* ARDROSSAN WILCOOLA U26* G4's dam was purchased in partnership with our good friends at Longford in support of Angus Youth. Usually Ben Nevis is a closed herd but we make exceptions for the great Wilcoola cows that orginally stem from Ardrossan. G-Force as we have nicknamed her has been a tremendous asset to us providing us with Donor L31 who is an absolute stunning feature cow in Lot 4. In her own right she produced a stud sire currently at work at Banquet at our 2019 sale. She has plenty of potential yet as a donor providing an outcross pedigree and great performance across the board in a powerful package. Pictured on page 60.

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
alara har	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	-6.9	-5.4	-4.1	8.6	57	97	138	139	10	0.7	0	79	6.6	-4.2	-5.9	3.0	1.3	-0.75	ABI	DOM	GRN	GRS
ACC	58%	49%	55%	78%	71%	71%	74%	69%	63%	56%	42%	62%	59%	65%	63%	59%	58%	48%	\$108	\$102	\$119	\$106
PERC	93	96	55	99	9	15	6	3	93	93	98	7	32	99	99	1	74	1	70	76	58	73
	Expe	cted Av	erage l	Progen	y Value	s – NBM	NP412 >		i4													
EBV	-5.8	-2.8	-4.6	7.5	55	96	133	135	11	1.1	-1.2	77	7.3	-3.4	-4.6	2.2	2.1	-0.3	\$116	\$107	\$132	\$110
ACC	58%	51%	60%	75%	69%	69%	72%	68%	62%	60%	41%	63%	60%	65%	63%	60%	60%	51%	36%	34%	37%	37%

Purchased by:

\$

\$

Lot 111 BEN NEVIS GERANIUM G12#

HBR 2/8/11 AMFU,CAFU,DDFU,NHFU ID NBNG12

MATING TYPE AI

B/R NEW DESIGN 036[#] TE MANIA UNLIMITED U3271[#] TE MANIA LOWAN R426+96[#] **TE MANIA INFINITY 04 379 AB[#]** TE MANIA PRINCE 153-93[#] TE MANIA 95102[#] TE MANIA 92F006 AB[#] BANQUET MERLOT X135* BANQUET ZEALFUL Z021^{PV} BANQUET DREAM X087* BEN NEVIS GERANIUM E122* B/R NEW FRONTIER 095* BEN NEVIS GERANIUM B46* BEN NEVIS GERANIUM X87* We are coming to the end run of Infinity cows now and if you don't already have one yet now is your chance. There simply has not been a more reliable and valuable sire line than these in the last ten years. The reason for this, and it shows in C12 is their combination of fleshing ability and carcase attributes. On top of this they add a flexibility to any joining and will produce a good calf, year on year, for years to come as they are know for their longevity. Case in point the joining of her to Metamorphic mimics out successful Bertel X Infinity combination from five years ago but on turbo-adding an X factor of quality as well. beautiful cow and very quiet.

TACE	Septe	mber 2	020 Tra	InsTasr	nan An	gus Ca	ttle Eva	luation	I					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
AN A	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-1.3	-5.7	-3.0	3.2	33	58	71	57	9	2.7	-4.9	34	0.5	-1.3	0	-0.8	2.3	0.46	ABI	DOM	GRN	GRS
ACC	64%	59%	83%	78%	73%	72%	76%	71%	66%	65%	56%	66%	66%	69%	69%	65%	64%	59%	\$73	\$81	\$72	\$72
PERC	74	96	73	24	98	99	99	98	98	16	47	99	99	83	37	93	33	84	98	98	95	99
	Expe	cted Av	erage l	Progen	y Value	s – NBN	1M51 x	NBNG	12													
EBV	-1.2	-0.5	-0.3	4.4	50	92	117	98	16	2.6	-5.6	65	2.6	-1.7	-1.1	-0.3	2.3	0.19	\$114	\$108	\$123	\$109
ACC	70%	60%	89%	87%	83%	81%	82%	75%	67%	76%	55%	72%	70%	73%	73%	69%	68%	61%	45%	43%	45%	46%

Purchased by:

Lot 112 BEN NEVIS JEAN G22^{sv}

HBR 5/8/11 AM3%,CAFU,DDFU,NH3%

ID NBNG22 MATING TYPE AI

B/R NEW DESIGN 036# TE MANIA UNLIMITED U3271# TE MANIA LOWAN R426+96# **TE MANIA INFINITY 04 379 AB#** TE MANIA PRINCE 153-93# TE MANIA 95102#

TE MANIA 92F006 AB#

BANQUET MERLOT X135# BANQUET ZEALFUL Z021^{pv} BANQUET DREAM X087# BEN NEVIS JEAN E45#

C A FUTURE DIRECTION 5321# BEN NEVIS JEAN X91# BEN NEVIS JEAN S55# When we select donors we take note of their cow family as well as their performance in their contemporary when all are treated the same. Both G22 and her dam blitzed their respective peer group for growth and IMF and G22 has gone on to be one of our most successful Donors. She is all the beautiful quality attributes of Infinity but with extra thump. She has one daughter already follow her to the ET program with Grandson P130 featuring as a Stud Sire here. Her son Ben Nevis No Fear made \$15,000 at our 2018 sale to Rod Craney but she has mainly left us with beautiful daughters in the M's and N's as her legacy to us.

IACE	Septe	mber 2	2020 Tra	ansTasr	nan An	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	VA, Rib	, Rump	, IMF)
in the second	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	-4.9	-2.9	-1.6	4.6	41	77	112	95	14	3.3	-3.1	53	2.5	-0.7	1.2	-1.1	1.9	0.61	ABI	DOM	GRN	GRS
ACC	67%	61%	83%	83%	76%	75%	79%	74%	67%	66%	56%	68%	66%	71%	70%	66%	65%	59%	\$93	\$84	\$93	\$94
PERC	89	89	89	58	86	81	52	55	71	6	79	88	94	67	11	96	48	93	89	97	85	90
	Expe	cted Av	erage	Progen	y Value	s – NM	MP15 x	NBNG	22													
EBV	2.0	4.5	-4.7	3.8	47	90	120	101	19	3.1	-4.4	65	4.4	-0.1	1.1	-0.7	2.3	0.43	\$120	\$109	\$127	\$117
ACC	66%	55%	88%	85%	75%	73%	75%	72%	63%	64%	47%	66%	63%	67%	65%	63%	62%	55%	39%	36%	40%	40%

Purchased by:

Lot 113 BEN NEVIS GERANIUM G27# AMFU,CA3%,DDFU,NHFU

HBR 8/8/11

B/R NEW DESIGN 036# TE MANIA UNLIMITED U3271# TE MANIA LOWAN R426+96# TE MANIA INFINITY 04 379 AB# TE MANIA PRINCE 153-93# TE MANIA 95102# TE MANIA 92F006 AB#

EXAR EXPAND 1241# BEN NEVIS ZEXAR Z86PV BEN NEVIS JEAN X114# **BEN NEVIS GERANIUM E128# BEN NEVIS VINDICATE V050* BEN NEVIS GERANIUM X87# BEN NEVIS GERANIUM S121**#

ID NBNG27

The perfect type of cow for our country being easy doing, functional and thick while maintaining feminity and structure to be mobile in the hills at Ben Nevis and Overflow. Her son Maverick M15 made \$11,000 in 2017 to Hyde and Sophie Thomson and she has three retained daughters in the herd. Really lovely cow - pure quality. Pictured on page 60.

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation	I		-			Т	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	-1.6	-8.0	-1.4	4.4	40	75	91	76	11	2.9	-5.9	47	5.0	-1.8	-0.1	-0.1	1.8	0.41	ABI	DOM	GRN	GRS
ACC	65%	59%	85%	81%	75%	74%	78%	73%	69%	65%	55%	67%	66%	71%	69%	66%	65%	58%	\$94	\$96	\$94	\$92
PERC	c 75 99 91 53 88 86 92 88 93 12 28 96 62 92 40 76 52 80 88															87	85	92				
	Expe	cted Av	erage l	Progen	y Value	s – NBI	NM51 x	NBNG	27													
EBV	-1.3	-1.7	0.5	5.0	54	100	127	107	17	2.7	-6.1	71	4.8	-2.0	-1.2	0.1	2.0	0.17	\$125	\$115	\$134	\$119
ACC	71%	60%	90%	89%	84%	82%	83%	76%	69%	76%	54%	72%	70%	74%	73%	70%	69%	60%	45%	43%	46%	46%

MATING TYPE AI

Purchased by:

\$

BEN NEVIS KIWI G49[#] Lot 114

AMFU,CA1%,DD6%,NHFU 17/8/11 HBR

MATING TYPE AI

S A V 8180 TRAVELER 004# S A V NET WORTH 4200# S A V MAY 2410# **SAV FREE SPIRIT 8164**# G A R INTEGRITY^{sv} S A V EMBLYNETTE 5463# S A V EMBLYNETTE 7319#

CRUSADER OF STERN AB# STERN 6129# **BEN NEVIS KIWI B52#** OAK HILL NEW DESIGN W005* **BEN NEVIS YELP Y14**# **BEN NEVIS KIWI V37#**

ID NBNG49

HINGAIA 469#

Kiwi G49 is one of the characters of the herd. She has extra thickness and width of top and quarter and has an udder as good as when she was two years of age. She has undergone Donor duties. Her son Manuscript M16 was one of the stud muffins of our 2017 sale selling to Dennis Heywood for \$15,000.

TACE	Septe	mber 2	020 Tra	InsTasn	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
A.X.	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	3.5	2.4	-0.5	4.1	40	75	94	77	14	2.0	-5.5	52	1.4	1.6	1.3	-0.5	0.8	-0.03	ABI	DOM	GRN	GRS
ACC	56%	46%	60%	78%	72%	72%	75%	69%	63%	62%	39%	63%	62%	67%	65%	61%	60%	45%	\$92	\$96	\$81	\$96
PERC	42															87	92	88				
	Expe	cted Av	erage l	Progen	y Value	s – NBM	NP122 >		i49													
EBV	5.3	3.8	-1.0	3.6	50	88	113	86	16	2.4	-6.5	59	3.2	1.2	1.8	-0.8	2.2	0.33	\$126	\$115	\$130	\$122
ACC	57%	47%	63%	76%	70%	71%	72%	67%	60%	62%	39%	62%	61%	65%	63%	60%	60%	48%	36%	33%	37%	36%

Purchased by:

Lot 115 BEN NEVIS DORMIST G76*

HBR	23/8/11	AMFU,CAFU,DDFU,NHFU	ID NBNG76	MATING	TYPE AI
	B/R NEW D	ESIGN 036#		VSTONF#	Anothe

TF MANIA I OWAN R426+96# TE MANIA INFINITY 04 379 AB* TE MANIA PRINCE 153-93# TE MANIA 95102# TE MANIA 92F006 AB#

TE MANIA UNLIMITED U3271#

VERMILION YELLOWSTONE# **BEN NEVIS BRUISER B33sv BEN NEVIS GERANIUM V107# BEN NEVIS DORMIST E35# GARDENS HIGHMARK*** **BEN NEVIS DORMIST C69# BEN NEVIS DORMIST V090#**

Another complete character and possibly the quietest cow in the sale. Introducing the dam of Monarch M128, our much treasured stud sire. As you can see she runs on the smell of an oily rag which, along with her marbling was one of the key reasons we selected Monarch for stud duties. Both G76 and Monarch were the highest IMF scanners in their contemporaries. He has been the best Stud Sire we have used since Xerox and we look forward to many more years of his progeny. This joining will make us very jealous indeed. We expect it to be a stonker. Pictured on page 60.

Ś

TACE	Septe	mber 2	020 Tra	nsTasr	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, \$	Scan (El	MA, Rib	, Rump	, IMF)
Televis have	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	6.7	1.8	-4.5	0.5	32	59	71	59	9	1.7	-3.6	41	3.4	0.2	1.2	-1.7	2.6	0.66	ABI	DOM	GRN	GRS
ACC	65%	59%	64%	82%	75%	75%	78%	73%	63%	65%	55%	68%	66%	71%	69%	66%	65%	58%	\$81	\$88	\$78	\$82
PERC	20	20 59 48 2 99 99 98 97 58 72 99 86 37 11 99 23 95 95 95															95	93	97			
	Expe	cted Av	erage	Progen	y Value	s – NBI	VM51 x	NBNG	76													
EBV	2.9	3.3	-1.1	3.0	50	92	117	99	16	2.1	-4.9	69	4.0	-1.0	-0.5	-0.7	2.4	0.29	\$118	\$111	\$126	\$114
ACC	71%	60%	79%	89%	84%	82%	83%	76%	66%	76%	54%	73%	70%	74%	73%	70%	69%	60%	45%	43%	46%	46%

Purchased by: \$

Lot 116 BEN NEVIS JUNE G91#

AMFU,CA9%,DDFU,NHFU

BANQUET MERLOT X135# BANQUET ZEALFUL Z021^{PV} BANQUET DREAM X087# BEN NEVIS DEL PEDRO D3^{SV} VICTOREE SCOTCH CAP K46+90^{SV} BEN NEVIS FLORYX U87# BEN NEVIS FLORYX J16+89#

BON VIEW NEW DESIGN 208^{sv} BON VIEW ERICA 443[#] BEN NEVIS JUNE X145[#] NICHOLS BLACK INK Y118[#] BEN NEVIS JUNE P53+94^{*} BEN NEVIS JUNE G37[#]

B/R NEW DESIGN 036#

ID NBNG91

Another bigger framed and yet easy doing cow of the type we like. We just love her silky coat and length of rein and her joining to Prospector maintains her uniqueness of pedigree genertaing while a sexy set of numbers. Her daughter sells as Lot 70.

TACE	Septe	mber 2	020 Tra	insTasr	nan Ang	gus Ca	ttle Eva	luation	1					Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
testerat have	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	es
EBV	-1.5	-0.9	-3.1	6.0	51	88	119	107	13	2.9	-2.1	61	2.5	-0.9	-0.4	0.7	1.1	0.04	ABI	DOM	GRN	GRS
ACC	58%	47%	59%	81%	75%	75%	78%	71%	73%	51%	4 1 %	64%	63%	69%	67%	63%	62%	45%	\$100	\$99	\$96	\$103
PERC	RC 75 80 72 86 30 43 33 31 79 12 90 64 94 73 49 40 81 33 82 83 43 Expected Average Progeny Values – NBNP412 x NBNG91															83	78					
	Expe	cted Av	erage I	Progen	y Value	s – NBI	NP412 >		91													
EBV	-3.1	-0.6	-4.1	6.2	53	91	123	120	13	2.2	-2.2	67	5.2	-1.8	-1.8	1.1	2.0	0.1	\$112	\$106	\$120	\$109
ACC	58%	50%	62%	76%	71%	71%	74%	69%	67%	57%	41%	64%	62%	67%	65%	62%	62%	49%	36%	34%	37%	37%

MATING TYPE Natural

Purchased by:

HBR

23/8/11

Lot 117 BEN NEVIS GERANIUM G115*

HBR 28/8/11

AMFU,CAFU,DDFU,NH3%

MATING TYPE AI

B/R NEW DESIGN 036* TE MANIA UNLIMITED U3271* TE MANIA LOWAN R426+96* **TE MANIA INFINITY 04 379 AB*** TE MANIA PRINCE 153-93* TE MANIA 95102* TE MANIA 92F006 AB* S A F FOCUS OF E R[#] MYTTY IN FOCUS[#] MYTTY COUNTESS 906[#] BEN NEVIS GERANIUM E168[#] BEN NEVIS XEROX X101^{PV} BEN NEVIS ROCY C6[#] BEN NEVIS GERANIUM T55[#]

ID NBNG115

The last Infinity cow in the sale and we will be so sad to see them go. This is, like all the Infinity's a big ribbed and roomy cow with her quality evident in the soft, silky skin. She is beautifully kind. These traits will only be exacerbated in the joining to Monarch. It will be pure quality. Her grandaughter P182 is our youngest Donor selected ever and her daughter J148 sells as Lot 99.

TACE	Septe	mber 2	020 Tra	insTasn	nan An	gus Ca	ttle Eva	luation						Ti	raits ob	served:	BWT, 6	00WT, 8	Scan (El	MA, Rib	, Rump	, IMF)
	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	n Indexe	s
EBV	4.2	-5.0	-4.2	4.1	45	75	92	72	14	2.4	-5.0	52	3.6	0.5	1.2	-0.5	1.6	0.61	ABI	DOM	GRN	GRS
ACC	64%	59%	67%	76%	74%	76%	78%	72%	71%	66%	56%	67%	68%	72%	71%	68%	66%	59%	\$93	\$97	\$86	\$95
PERC	36	6 95 53 45 67 85 91 91 77 26 45 89 84 28 11 87 61 93 89 86															86	90	89			
	Expe	cted Av	erage l	Progen	y Value	s – NBN	M128	x NBNO	G115													
EBV	4.6	-0.8	-5.0	3.5	45	77	99	85	14	2.4	-4.8	57	3.7	0.3	1.0	-1.1	2.2	0.57	\$101	\$99	\$102	\$101
ACC	65%	57%	68%	81%	77%	79%	79%	74%	68%	70%	53%	70%	70%	73%	72%	69%	68%	60%	43%	40%	44%	44%

Purchased by:

Lot 118 BEN NEVIS DORMIST G129#

HBR 8/9/11 AMFU,CA2%,DDFU,NHFU ID NBNG129 MATING TYPE Natural

S A F FOCUS OF E R[#] MYTTY IN FOCUS[#] MYTTY COUNTESS 906[#] BEN NEVIS ERITREA E6^{SV} BULLIAC X-RAY X10[#] BEN NEVIS DORMIST C46[#] BEN NEVIS DORMIST C46[#] D H D TRAVELER 6807# ALBERDA TRAVELER 416" ALBERDA QUEEN KIMBERLY 222# BEN NEVIS DORMIST W047# BEN NEVIS PUGSLEY+94* BEN NEVIS DORMIST R118+96* BEN NEVIS DORMIST G38#

A fitting way to end the sale with an absolute classic Ben Nevis pedigree. Dormist G129 is beautifully soft coated and oozing style. Her son M20 was the pin-up boy of our 2017 sale selling to Jordie Muller for \$13,000 and showing the same proud front end and length of body.

Ś

TACE	Septe	mber 2	020 Tra	insTasr	nan An	gus Ca	ttle Eva	luation						Т	raits ob	served:	BWT, 6	00WT, S	Scan (El	MA, Rib	, Rump	, IMF)
alera har	CEDir	CEDtr	GL	BW	200	400	600	MCW	Milk	SS	DTC	CWT	EMA	RIB	P8	RBY	IMF	NFI-F	S	electior	Indexe	s
EBV	11.6	-2.7	-4.2	1.7	34	62	79	75	15	1.9	-2.9	43	4.1	0	0.1	1.1	1.2	0.53	ABI	DOM	GRN	GRS
ACC	58%	48%	60%	79%	74%	74%	76%	70%	69%	61%	44%	64%	64%	68%	67%	62%	61%	47%	\$82	\$91	\$74	\$86
PERC	2	2 88 53 6 98 99 98 89 61 48 82 98 77 44 34 23 77 89 95 93															93	95	95			
	Expe	cted Av	erage l	Progen	y Value	s – NBM	NP412 >		129													
EBV	3.5	-1.5	-4.6	4.1	44	78	103	104	14	1.7	-2.6	58	6.0	-1.3	-1.6	1.3	2.1	0.35	\$103	\$102	\$109	\$100
ACC	58%	50%	63%	75%	71%	71%	73%	68%	65%	62%	42%	64%	63%	66%	65%	62%	61%	50%	37%	34%	38%	38%

Purchased by:

Thank you for your purchases. Please contact Lockie Falls for transport options (see advert on page 70).

JOIN SIRES

BEN NEVIS METAMORPHIC

Metamorphic was the high selling \$32,000 bull from our 2017 sale selling to syndicate including Banquet, Fernleigh and Twin Oaks. His dam is Lot 15 - K80, his grand dam is Lot 14 - H215 and he is the maternal brother to the \$24,000 Newsflash. His thumping dam jean K80 is Jean H215's daughter she is a maternal sister to the \$24,000 Ben Nevis Newsflash. We specifically chose Meta over the Infinity females to produce an exciting offspring that has a high head carriage with a ton of muscle and the softness. They will be very special.

PARATROOPER

Paratrooper was reserved for some of our special donors to blend in his unique length and expression of natural thickness, softness and style. This is a top-shelf joining.

NEWSFLASH

A very special bull for us from our favourite Donor Jean H215 he combines her traditional quality with Proceeds carcase and is docile, thick, an outcross and an ultimate spunk. Purchased by Bannaby Angus for \$28,000 in 2018 and available through Jack Laurie at Breeder Genetics.

BEAST MODE

Beast Mode has the carcase quality of his sire with the depth, softness and thump of his famous dam. Highly functional and suitable to Australian conditions his progeny are consistently excellent. On top of function and form they have the extra quality and style we love. His calves are always consistently exciting and he is always in short supply and high demand.

BEN NEVIS MONARCH

A simply beautiful bull who displays what we have been working towards in good old fashioned quality with a wealth of carcase under the hide. A real gentleman and breeding the house down with soft, deep kind daughters and sons. Easy doing, slick coated and thick with excellent feet.

MUSGRAVE EXCLUSIVE

It is the combination of skin, softness and pure mass that drew us to Exclusive and the surety of the programme he comes from.

FIREBALL

A bull to inject extra IMF and softness that is backed by an excellent cow family. Good skin and bone, and the rein we like in all our cattle.

BEN NEVIS PROPOGATE P37

The \$28,000 second top seller at our 2019 sale, offering a unique combination of power and softness being the highest IMF, biggest EMA and fattest bull in his large contemporary. A very showy bull, his first calves here and at Merit Farms are knockouts. His Donor Dam sells as Lot 98.

BEN NEVIS PODIUM P242

Combines Lionhearts thickness and style in a calving ease package. His dam sells as Lot 39.

BEN NEVIS PROSPECTOR P412

Combines a unique, high performance bloodline in a big volume, deep-bodied package with a terrific sire's head. His spectacular Donor Dam sells as Lot 4.

BEN NEVIS METAMORPHIC

PARATROOPER

BEN NEVIS NEWSFLASH (pictured at 11 months)

BARLDRIDGE BEAST MODE

BEN NEVIS MONARCH (pictured at 4 years)

MUSGRAVE EXCLUSIVE

FIREBALL

BEN NEVIS PROPOGATE P37

INSPIRING SIRES

When I first started making breeding decisions 35 years ago Dad let me have my way a bit and I disastrously used about 20 sires for every 30 cows. To this day I can hear his advice to just use a few sires and to breed them in large consistent lines appropriate to that particular cow family. Here are the top sires that have had a profound bearing on the females in this sale.

BEN NEVIS XEROX (ROXY)

Simply the best bull from the best cow and as I once boasted possibly the best bull in the universe. Kind, deep ribbed, slick coated and strong spined with a good head. We think he is still ... possibly ... the best bull in the universe.

TE MANIA INFINITY

We wanted to prove that Roxy was the best bull in the universe and set him head to head with what we thought was the then overrated Te Mania Infinity. We set out to hate him and like a reformed smoker we soon became zealots. The Infinity females typify the perfect Angus cow. They are easy doing with good constitution, a kind nature and a soft slick skin that hides a wealth of carcase. They are a stunning cow line.

AYRVALE BARTEL

Again a bull we set out to hate and used as a benchmark sire to improve accuracy within our herd and to boost our IMF bottom line. Of course we ended up really admiring this bull. He worked beautifully in a complementary fashion with the Infinity daughters adding carcase beneath the hide and maintaining the constitution and structure. The Bartels daughters are deeply maternal and make magnificent mothers.

REMITALL RACHIS

Rachis was the most exciting bull we used in the last decade and was discovered by Chris Knox and Helen Alexander (whose cattle breeding skills are among the best in the business in our minds). Rachis added more depth and softness to the Bartel x Infinity line and gave us a series of high selling bulls over three years producing our next Cow Making Sire – Ben Nevis Judo.

BEN NEVIS ERITREA E6

Our philosophy on good bulls is that they must have a super cow behind them. Eritrea's dam is the foundation for no less than three Donors in our current program, and Eritrea is the Sire of super cow Jean K80. They are highly productive females with long necks and big bodies. They are very high milking.

BEN NEVIS FRONTROW

Named for good reason he bred daughters with enormous capacity and constitution. His daughters are earlier maturing, square and with a good fine skin and doing ability. He is the sire of the irreplaceable Jean H215.

RAFF EMPIRE

Empire sires big volume daughters with silky skins. He has always been a favourite of ours and comes from an excellent program and cow line.

CHERYLTON STEWIE

Stewie throws a ton of performance and capacity whose daughters are displaying good longevity.

POSS TOTAL IMPACT

Chosen for his fine skin, outlook and ability to breed functional females.

BEN NEVIS XEROX (ROXY)

REMITALL RACHIS

RAFF EMPIRE

TE MANIA INFINITY

BEN NEVIS ERITREA E6

CHERYLTON STEWIE

ARYVALE BARTEL

BEN NEVIS FRONTROW

POSS TOTAL IMPACT

TransTasman Angus Cattle Evaluation - September 2020 Reference Tables

												BRE	ED AV	/ERAG	E EBVS	/S													
	Calving	Calving Ease	Birth	th		0	Growth			Fertility	ity			Carca	Ise			Other	r.		St	Structure			ŭ	election	Indexes	(0	
	CEDir	CEDtrs	GL	CEDir CEDtrs GL BW 200 400 600	200	400	600	MCW	MCW Milk	SS	ртс	CWT EMA	EMA	RIB	P 8		IMF	NFI-F	RBY IMF NFI-F DOC FA	FA	FC RA RH RS	RA	RН	RS	ABI	ABI DOM GRN	GRN	GRS	
Brd Avg +1.8 +2.4 -4.4 +4.	+1.8	+2.4	-4.4	e,	+48 +86	+86	+112	+98	+98 +17 +1.9		-4.7	+64 +5.7	+5.7	0.1 -0.4	-0.4	+0.5	+2.0	+0.17 +5	+5	+1 +0	0+	÷	-0.4	-0.4 -0.3	+117	+117 +110 +124 +114	+124	+114	

* Breed average represents the average EBV of all 2018 drop Australian Angus and Angus-influenced seedstock animals analysed in the September 2020 TransTasman Angus Cattle Evaluation

				_																					
	Sé	GRS	Greater Profitability	+147	+138	+133	+130	+127	+125	+123	+121	+119	+117	+115	+114	+112	+110	+108	+105	+102	+99	+94	+86	+69	Lower Profitability
	n Indexe	GRN	Greater Profitability	+187	+171	+161	+155	+149	+144	+140	+136	+132	+129	+125	+122	+118	+114	+110	+105	+100	+93	+85	+72	+42	Lower Profitability
	Selection Indexes	DOM	Greater Profitability	+137	+129	+125	+123	+121	+119	+117	+116	+114	+113	+111	+110	+108	+107	+105	+103	+101	+98	+94	+88	+74	Lower Profitability
	S	ABI	Greater Profitability	+160	+149	+142	+138	+134	+131	+128	+126	+124	+121	+119	+116	+114	+111	+108	+105	+102	+97	+91	+81	+59	Lower Profitability
		RS	Sound More	+0.3	+0.3	+0.3	+0.3	+0.2	+0.2	+0.2	+0.1	+0.1	+0.1	0.0+	0.0+	-0.1	-0.2	-0.3	-0.4	-0.6	-0.9	-1.3	-2.1	-4.3	bnuoS Less
	е	ΗH	More Bound	+4.6	+2.9	+2.1	+1.8	+1.6	+1.3	+0.9	+0.7	+0.4	+0.2	+0.0	-0.2	-0.4	-0.7	-1.1	-1.6	-2.0	-2.8	-3.6	-5.4	-9.4	punoS ssəJ
	Structure	RA	Sound More	+15	+11	ę	+7	94	÷5	4	ę	42	Ŧ	q	÷	÷	ကု	4	ς	-7	6-	-12	-17	-25	bnuo2 sesJ
		FC	More Bound	+24	+19	+16	+14	+12	+11	6+	+7	94	4	ę	Ŧ	Ţ	ကု	9	<u>و</u>	-12	-15	-18	-23	-31	punoS ssəJ
		FA	Sound Sound	+22	+16	+14	+ 1	+10	48	+7	1 6	+5	4	1 3	42	q	÷	ကု	ς	φ	.	-16	-23	-31 -	punoS ssəJ
	Other	DOC	More Docile	+33	+25	+20	+17	+15	+13	+ 1	+10	8	+7	+2	4	Ŷ	Ŧ	÷	ġ	4	ę	6-	-13	-21	Less Docile
	ot	NFI-F	Greater Feed Efficiency	-0.54	-0.32	-0.21	-0.14	-0.08	-0.03	+0.01	+0.05	+0.09	+0.13	+0.17	+0.20	+0.24	+0.28	+0.32	+0.36	+0.41	+0.47	+0.55	+0.66	+0.91	Lower Efficiency Efficiency
		IMF	More More	+4.3	+3.6	+3.2	+3.0	+2.8	+2.6	+2.4	+2.3	+2.1	+2.0	+1.9	+1.8	+1.7	+1.5	+1.4	+1.3	+1.2	+1.0	+0.8	+0.5	+0.0	IWL Fess
ABLE		RBY	Higher Yield	+2.7	+2.0	+1.6	+1.4	+1.2	+1.1	+1.0	+0.8	+0.7	+0.6	+0.5	+0.4	+0.3	+0.2	+0.1	+0.0	-0.2	-0.4	-0.6	-1.0	-1.8	Lower Yield
BANDS TABLE	Carcase	P 8	More Fat	+3.0	+1.9	+1.3	+1.0	+0.7	+0.5	+0.3	+0.1	-0.1	-0.2	-0.4	-0.6	-0.7	-0.9	-1.1	-1.3	-1.5	-1.8	-2.1	-2.7	-3.9	Less Fat
E BAN	Car	RIB	More Fat	+3.0	+2.0	+1.5	+1.1	+0.9	+0.7	+0.5	+0.3	+0.1	+0.0	-0.2	-0.3	-0.4	-0.6	-0.8	-0.9	-1.1	-1.3	-1.6	-2.1	-3.0	Less Fat
PERCENTILE		EMA	EWF רַצּנַקפּנ	+11.6	+9.6	+8.5	+7.9	+7.5	+7.1	+6.8	+6.5	+6.2	+5.9	+5.6	+5.4	+5.1	+4.8	+4.6	+4.3	+3.9	+3.5	+3.0	+2.3	+0.5	Smaller EMA
PERC		CWT	Heavier Carcase Weight	+88	+81	+77	+74	+72	+70	+69	+68	+66	+65	+64	+63	+62	+60	+59	+58	+56	+54	+51	+47	+38	Lighter Carcase Weight
	Fertility	DTC	Shorter Time to Calving	-9.3	-8.0	-7.3	-6.9	-6.5	-6.1	-5.8	-5.5	-5.3	-5.0	-4.8	-4.5	-4.3	-4.0	-3.7	-3.4	-3.1	-2.7	-2.1	-1.2	+0.9	Longer Time to Calving
	Fer	SS	Larger Scrotal Size	+4.1	+3.4	+3.0	+2.8	+2.6	+2.5	+2.3	+2.2	+2.1	+2.0	+1.9	+1.8	+1.7	+1.6	+1.5	+1.4	+1.3	+1.1	1 0.9	1 0.6	-0.1	Smaller Scrotal Size
		Milk	Heavier Live Weight	+27	+24	+22	+21	+20	+19	+19	+18	+18	+17	+17	+16	+16	+15	+14	+14	+13	+12	+11	+10	+7	Lighter Live Weight
		MCW	Heavier Mature Weight	+150	+132	+124	+118	+114	+111	+108	+105	+102	+100	+97	+95	+93	+90	+88	+85	+82	+78	+73	+65	+49	Lighter Mature Weight
	Growth	600	Heavier Live Weight	+152	+139	+133	+128	+125	+123	+120	+118	+116	+114	+112	+110	+109	+107	+104	+102	+100	+96	+93	+86	+71	Lighter Live Weight
		400	Heavier Live Weight	+113	+104	+100	+97	+95	+93	+91	+90	+89	+87	+86	+85	+83	+82	+80	+79	+77	+75	+72	+68	+58	Lighter Live Weight
		200	Heavier Live Weight	+64	+59	+56	+54	+53	+52	+51	+50	+49	+49	+48	+47	+46	+45	+44	+43	+42	41	+39	+37	+30	Liyêr Livê Weight
	Birth	BW	Lighter Birth Weight	+0.4	+1.6	+2.2	+2.6	+2.9	+3.2	+3.4	+3.7	+3.9	+4.1	+4.3	+4.5	+4.7	+4.9	+5.1	+5.3	+5.6	+5.9	+6.3	+6.9	+8.2	Heavier Birth Weight
	B	GL	Shorter Gestation Length	-10.2	-8.3	-7.4	-6.8	-6.3	-5.9	-5.6	-5.3	-5.0	-4.7	-4.4	-4.1	-3.8	-3.5	-3.2	-2.9	-2.5	-2.1	-1.5	-0.6	+1.4	Longer Gestation Length
	Calving Ease	CEDtrs	Less Calving Difficulty	+10.9	+8.8	+7.6	+6.8	+6.1	+5.5	+4.9	+4.4	+3.8	+3.3	+2.8	+2.3	+1.7	+1.1	+0.5	-0.2	-1.0	-2.0	-3.3	-5.2	-9.2	More Calving Difficulty
		CEDir	Less Calving Difficulty	+12.2	+9.9	+8.5	+7.5	+6.6	+5.8	+5.1	+4.4	+3.7	+3.0	+2.3	+1.6	+0.9	+0.1	-0.7	-1.6	-2.7	-3.9	-5.5	-8.0	-13.4	More Calving Difficulty
	0/, Dand			1%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%	55%	%09	65%	%02	75%	80%	85%	%06	95%	%66	

* The percentile bands represent the distribution of EBVs across the 2018 drop Australian Angus and Angus-influenced seedstock animals analysed in the September 2020 TransTasman Angus Cattle Evaluation .

ANGUS BREEDPLAN EBV GROUP BREEDPLAN AVERAGE EBVS

SEPTEMBER 2020 TRANS TASMAN ANGUS CATTLE EVALUATION

Average EBVs from all 2019 drop calves

															SEL	ECTIOI	n inde>	XES
CED	CEM	BW	200	400	600	MCW	MILK	SS	CWT	EMA	RIB	RMP	RBY	IMF	AB	DOM	HGN	HGS
1.8	2.4	4.3	48	86	112	98	17	1.9	64	5.7	-0.1	-0.4	0.5	2.0	\$117	\$110	\$124	\$114

USING EBV PERCENTILES

Selecting the right cow for your business needs to be as easy as possible. So we have incorporated percentiles into our catalogue as an extra tool to help you.

A percentile value allows you to see where an animal sits in the breed for each trait. This gives you more information that an EBV figure alone. For example, if an animal sits in the 30th percentile for IMF it means it is in the top 30% of the breed. But, if an animal sits in the 80th percentile it means that 80% of animals are better than it. Generally the lower the percentile figure the better, except in the case of some traits where moderation or balance is preferred like Mature Cow Weight and Scrotal Size (can be too big), or BW (too small and frail at birth).

				BEN NE	/IS JEAN			
The 600 day v cow sits in the 8	80th percentile,		600	EMA	RIB	RMP	IMF	t
meaning 80% better than hir		EBV	90	4.5	2.3	2.3	2.1	
		PERC	80%	55%	5%	5%	30%	

The IMF of this cow sits in the 30th percentile, meaning he sits in the top 30% of the breed for this trait.

Information on Percentiles courtesy of Trio Angus.

DISCLAIMER AND PRIVACY INFORMATION

Important notices for purchasers

ATTENTION BUYER

Animal details included in this catalogue, including but not limited to pedigree, DNA information, Estimated Breeding Values (EBVs) and Index values, are based on information provided by the breeder or owner of the animal. Whilst all reasonable care has been taken to ensure that the information provided in this catalogue was correct at the time of publication, Angus Australia will assume no responsibility for the accuracy or completeness of the information, nor for the outcome (including consequential loss) of any action taken based on this information.

ATTENTION BUYER – Embryo Expected Average Progeny Values

Expected average progeny values are provided to assist breeders estimate the outcome of particular mating combinations. The actual TransTasman Angus Cattle Evaluation EBVs for any progeny resulting from a particular mating are likely to vary from the expected average values.

PRIVACY INFORMATION

In order for Angus Australia to process the transfer of a registered animal in this catalogue, the vendor will need to provide certain information to Angus Australia and the buyer consents to the collection and disclosure of that information by Angus Australia in certain circumstances.

If the buyer <u>does not</u> wish for his or her information to be stored and disclosed by Angus Australia, the buyer must complete a form which will be available when registering to bid on the day and forward it to Angus Australia. If the form is not completed, the buyer will be taken to have consented to the disclosure of such information.

Lockie Falls – 0429 826 342 www.fallslivestock.com.au | flt1@bigpond.com

Specialist Stud Stock Transport servicing all states Australia Wide

UNDERSTANDING THE TRANSTASMAN ANGUS CATTLE EVALUATION

WHAT IS THE TRANSTASMAN ANGUS CATTLE EVALUATION?

The TransTasman Angus Cattle Evaluation (TACE) is the genetic evaluation program adopted by Angus Australia for Angus and Angus infused beef cattle. TACE uses Best Linear Unbiased Prediction (BLUP) technology to produce Estimated Breeding Values (EBVs) of recorded cattle for a range of important production traits (eg. weight, carcase, fertility).

TACE includes pedigree, performance and genomic information from the Angus Australia and New Zealand Angus Association databases to evaluate the genetics of animals across Australia and New Zealand.

TACE analyses are conducted by the Agricultural Business Research Institute (ABRI), using beef genetic evaluation software developed by the Animal Genetics and Breeding Unit (AGBU), a joint institute of NSW Agriculture and the University of New England, and Meat and Livestock Australia Limited (MLA).

WHAT IS AN EBV? An animal's breeding value can be defined as its genetic merit for each trait. While it is not possible to determine an animal's true breeding value, it is possible to estimate it. These estimates of an animal's true breeding value are called EBVs (Estimated Breeding Values).

EBVs are expressed as the difference between an individual animal's genetics and a historical genetic level (ie. group of animals) within the TACE genetic evaluation, and are reported in the units in which the measurements are taken.

USING EBVS TO COMPARE THE GENETICS OF TWO ANIMALS:

TACE EBVs can be used to estimate the expected difference in the genetics of two animals, with the expected difference equating to half the difference in the EBVs of the animals, all other things being equal (eg. they are joined to the same animal/s).

For example, a bull with a 200 Day Growth EBV of +60 would be expected to produce progeny that are, on average, 10kg heavier at 200 days of age than a bull with a 200 Day Growth EBV of +40kg (ie. 20kg difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

Or similarly, a bull with an IMF EBV of +3.0 would be expected to produce progeny with on average, 1% more intramuscular fat in a 400kg carcase than a bull with a IMF EBV of +1.0 (ie. 2% difference between the sire's EBVs, then halved as the sire only contributes half the genetics).

USING EBVS TO BENCHMARK AN ANIMAL'S GENETICS:

EBVs can also be used to benchmark an animal's genetics relative to the genetics of other Angus/Angus infused animals in Australia and New Zealand.

To benchmark an animal's genetics relative to other Angus animals, an animal's EBV can be compared to the EBV reference tables, which provide:

- the breed average EBV
- the percentile bands table

The current breed average EBV is listed on the bottom of each page in this publication, while the current EBV reference tables are included at the end of these introductory notes.

For easy reference, the percentile band in which an animal's EBV ranks is also published in association with the EBV.

CONSIDERING ACCURACY: An accuracy value is published with each EBV, and is usually displayed as a percentage value immediately below the EBV.

The accuracy value provides an indication of the reliability of the EBV in estimating the animal's genetics (or true breeding value), and is an indication of the amount of information that has been used in the calculation of the EBV.

EBVs with accuracy values below 50% should be considered as preliminary or of low accuracy, 50-74% as of medium accuracy, 75-90% of medium to high accuracy, and 90% or greater as high accuracy.

DESCRIPTION OF TACE EBVS: EBVs are calculated for a range of traits within TACE, covering calving ease, growth, fertility, maternal performance, carcase merit, feed efficiency and structural soundness. A description of each EBV included in this catalogue is available at <u>www.angusaustralia.com.au</u>.

LOW STRESS STOCK HANDLING

We often get asked why our cattle are so good to work with and we have determined it's a major reason people buy our bulls, steers and replacement heifers.

While temperament is a big ticket factor for us genetically (especially after dads near death experience in 1999), we also recognise the Importance of working stock differently with methods taught to us by Chook Kealey and Bud Williams.

Chooks ability to get our animals through the high stress situation of a sale ring is legendary. He explains that when you work animals and understand their four instincts and seven principles you get a different outcome's to just working cattle quietly which is what most people mistakenly believe is low stress stock handling.

Chook has taught us so much and he is available to run schools on farm for other stud breeders with him recently working with Te Mania and Ascot Studs. It makes a huge difference.

Chook Kealey

Phone 0428 418795 Email Chook.kealey@gmail.com www.lss.net.au

Attitude is everything

Great design.

Over 30 years of design experience, specialising in print media.

- Catalogues, brochures and newsletters
- · Logos and company identities
- · Banners and displays
- Packaging and direct marketing
- Magazine and newspaper advertising

Megan Scrivener Design Phone 0428 867 076 Email meganscrivener@bigpond.com

The most capable hands this side of yours.

Nutrien Boulton's specialise in livestock sales and procurement. Our proactive, award winning livestock team has a wealth of experience servicing Walcha and regional NSW.

Nutrien Boulton's Walcha – AuctionsPlus Awards
Top cattle sales 2013, 2014, 2015 and 2016
Top cattle throughput 2019 and 2020

3n Derby St, Walcha NSW. Ph 02 6777 2044

HOW TO REGISTER with **ELITE LIVESTOCK AUCTIONS** THE NG Welcome to the new age of selling livestock in Australia and "Happy Bidding" Simply go to Once an account has been created www.elitelivestockauctions.com.au you are all "Set to Bid" using your desktop, laptop, iPad, iPhone or android device Each auction can then be viewed 2 Click on the "Sign Up" page / link by clicking "Live Auction" logo on 8 the Elite Livestock Auctions website Create a bidding profile using the Once you receive email notification bidder registration page. that your account has been created 3 please go to the sale you wish to bid (You can either register as a livestock agent, company or private buyer.) at and click "Request to Bid" Agree to the Elite Livestock Auctions The sale agents will then approve Terms & Conditions and the Selling your application to bid and on the 10 Agents Sale Terms & Conditions as sale catalogue you will see printed in the official Sale Catalogue " 🗸 Bid Request Approved" On Sale day simply login, click "Enter Auction" on the catalogue 11 LOGIN Click "Register" page and you can start bidding. (There is no need for software download) At the completion of the auction, You will then be notified by email that invoicing will be carried out as per 6 an account has been created your registration details by the Selling Agents.

Having trouble registering and logging in? Contact Elite Livestock Auctions 1300 15 31 35

Elite Livestock Auctions ABN 19 604 627 607
340 Curtin Avenue West, Eagle Farm QLD 4009

BEN NEVIS ANGUS THE POWER OF FEMALE LINES

LOT 71. BEN NEVIS JEAN L115

REPRESENTING THE

LOT 71 BEN NEVIS JEAN K2

www.bennevisangus.com.au

'Mingary', Walcha NSW 2354 Phone 02 6777 3884 or 0427 780 154 Email bennevisangus@bigpond.com

BEN NEVIS ANGUS

R213

f 0

More Lot photos and video's online. Interfaced with Elite Livestock Auctions. View our video at www.bennevisangus.com.au Follow us on Facebook and Instagram

